版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省东台市第六教育联盟数学八上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°2.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cmC.8cm、6cm、3cm D.11cm、4cm、6cm3.下列方程中是二元一次方程的是()A. B.C. D.4.如图,在中,点为的中点,平分,且于点,延长交于点.若,,则的长为()A.5 B.6 C.7 D.85.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学80809090则这四名同学四次数学测试成绩最稳定的是()A.甲 B.乙 C.丙 D.丁6.在矩形(长方形)ABCD中,AB=3,BC=4,若在矩形所在的平面内找一点P,使△PAB,△PBC,△PCD,△PAD都为等腰三角形,则满足此条件的点P共有()个.A.3个 B.4个 C.5个 D.6个7.如图,数轴上的点A表示的数是-2,点B表示的数是1,于点B,且,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A. B. C. D.28.在实数,,,中,无理数是()A. B. C. D.9.在一篇文章中,“的”、“地”、“和”三个字共出现50次,已知“的”和“地”出现的频率之和是0.7,那么“和”字出现的频数是()A.14B.15C.16D.1710.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容:如图,已知,求作:,使.作法:(1)以为圆心,任意长为半径画弧,分别交、于点、;(2)作射线,并以点为圆心,长为半径画弧交于点;(3)以点为圆心,长为半径画弧交(2)步中所画弧于点;(4)作,即为所求作的角.A.表示点 B.表示C.表示 D.表示射线11.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A.3,4,5 B.,, C.8,15,17 D.5,12,1312.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.14.如图,,平分,为上一点,交于点,于,,则_____.15.若点P关于x轴的对称点为P1(2a+b,-a+1),关于y轴对称点的点为P2(4-b,b+2),则点P的坐标为16.如图,,要使,还需添加一个条件是:______.(填上你认为适当的一个条件即可)17.一个多边形所有内角都是135°,则这个多边形的边数为_________18.平面直角坐标系中,与点(4,-3)关于x轴对称的点是______.三、解答题(共78分)19.(8分)如图,四边形ABCD中,,,,对角线BD平分交AC于点P.CE是的角平分线,交BD于点O.(1)请求出的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由;20.(8分)某校初二数学兴趣小组活动时,碰到这样一道题:“已知正方形AD,点E、F、G、H分别在边AB、BC、CD、DA上,若,则EG=FH”.经过思考,大家给出了以下两个方案:(甲)过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;(乙)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N;(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1)(2)如果把条件中的“”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图2),试求EG的长度.21.(8分)如图①,中,,、的平分线交于O点,过O点作交AB、AC于E、F.(1)猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.(3)如图③,若中的平分线BO与三角形外角平分线CO交于O,过O点作交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.22.(10分)我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC的一半吗?若改变,说明理由;若不变,说明理由.23.(10分)如图,已知△ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).(1)画出△ABC关于原点O成中心对称的图形△A′B′C′;(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A″B″C″,并写出点B″的坐标.24.(10分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.25.(12分)如图,在四边形中,,为的中点,连接,且平分,延长交的延长线于点.(1)求证:;(2)求证:;(3)求证:是的平分线;(4)探究和的面积间的数量关系,并写出探究过程.26.受气候的影响,某超市蔬菜供应紧张,需每天从外地调运蔬菜1000斤.超市决定从甲、乙两大型蔬菜棚调运蔬菜,已知甲蔬菜棚每天最多可调出800斤,乙蔬菜棚每天最多可调运600斤,从两蔬菜棚调运蔬菜到超市的路程和运费如下表:到超市的路程(千米)运费(元/斤·千米)甲蔬菜棚1200.03乙蔬菜棚800.05(1)若某天调运蔬菜的总运费为3840元,则从甲、乙两蔬菜棚各调运了多少斤蔬菜?(2)设从甲蔬菜棚调运蔬菜斤,总运费为元,试写出与的函数关系式,怎样安排调运方案才能使每天的总运费最省?
参考答案一、选择题(每题4分,共48分)1、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.2、C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.∵2+2=4,∴2cm、2cm、4cm不能组成三角形,故不符合题意;B.∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C.∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D.∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.3、B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:化简得,最高次是2次,故A选项错误;是二元一次方程,故B选项正确;不是整式方程,故C选项错误;最高次是2次,故D选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.4、B【分析】根据平分,且可得△ADB≌△ADN,得到BD=DN,AN=AB=4,根据三角形中位线定理求出NC,计算即可.【详解】解:∵平分,且∴,在△ADB和△ADN中,∴△ADB≌△ADN(ASA)
∴BD=DN,AN=AB=4,
∵点为的中点,
∴NC=2DM=2,
∴AC=AN+NC=6,
故选B.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.5、C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:(80+80+90+90)=85;方差为S丁2[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.6、C【分析】根据矩形的对称性画出对称轴,然后根据等腰三角形的定义作图即可.【详解】解:作矩形的两条对称轴l1和l2,交于点P1,根据对称性可知此时P1满足题意;分别以A、B为圆心,以AB的长为半径作弧,交l1于点P2、P3;分别以A、D为圆心,以AD的长为半径作弧,交l2于点P4、P1.根据对称性质可得P1、P2、P3、P4、P1均符合题意这样的点P共有1个故选C.【点睛】此题考查的是矩形的性质和作等腰三角形,掌握矩形的性质和等腰三角形的定义是解决此题的关键.7、C【分析】根据勾股定理,可得AC的值,从而得到AD的长,进而可得到答案.【详解】∵数轴上的点A表示的数是-2,点B表示的数是1,∴AB=3,∵于点B,且,∴,∵以点A为圆心,AC为半径画弧交数轴于点D,∴AD=AC=,∴点D表示的数为:,故选C.【点睛】本题主要考查数轴上点表示的实数与勾股定理,根据勾股定理,求出AC的长,是解题的关键.8、D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【详解】解:在实数,,,中,=2,=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.9、B【解析】根据“的”和“地”的频率之和是0.7,得出“和”字出现的频率是0.3,再根据频数=频率×数据总数,即可得出答案.【详解】解:由题可得,“和”字出现的频率是1﹣0.7=0.3,∴“和”字出现的频数是50×0.3=15;故选:B.【点睛】此题考查了频数和频率之间的关系,掌握频率的定义:每个对象出现的次数与总次数的比值(或者百分比)即频数=频率×数据总数是本题的关键.10、D【分析】根据尺规作一个角等于已知角的步骤,即可得到答案.【详解】作法:(1)以点为圆心,任意长为半径画弧,分别交、于点、;(2)作射线,并以点为圆心,为半径画弧交于点;(3)以点D为圆心,PQ长为半径画弧交(2)步中所画弧于点;(4)作射线,即为所求作的角.故选D.【点睛】本题主要考查尺规作一个角等于已知角,掌握尺规作图的基本步骤是解题的关键,注意,尺规作一个角等于已知角的原理是:SSS.11、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:、,能构成直角三角形;、,不能构成直角三角形;、,能构成直角三角形;、,能构成直角三角形.故选:.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12、B【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.二、填空题(每题4分,共24分)13、1.5【解析】在Rt△ABC中,,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.14、【分析】过P作PF⊥OB于F,根据角平分线的定义可得∠AOC=∠BOC=15°,根据平行线的性质可得∠DPO=∠AOP,从而可得PD=OD,再根据30度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.【详解】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,又∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线且PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.
故答案为:2cm.【点睛】此题主要考查:(1)含30°度的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半;(2)角平分线的性质:角的平分线上的点到角的两边的距离相等.此题难易程度适中,是一道很典型的题目.15、(2a+b,b+2)【解析】答案应为(-9,-3)解决此题,先要根据关于x轴的对称点为P1(2a+b,-a+1)得到P点的一个坐标,根据关于y轴对称的点P2(4-b,b+2)得到P点的另一个坐标,由此得到一个方程组,求出a、b的值,即可得到P点的坐标.解:∵若P关于x轴的对称点为P1(2a+b,-a+1),∴P点的坐标为(2a+b,a-1),∵关于y轴对称的点为P2(4-b,b+2),∴P点的坐标为(b-4,b+2),则,解得.代入P点的坐标,可得P点的坐标为(-9,-3).16、或或【分析】由∠1=∠2可得∠AEB=∠AEC,AD为公共边,根据全等三角形的判定添加条件即可.【详解】∵∠1=∠2,∴∠AEB=∠AEC,∵AE为公共边,∴根据“SAS”得到三角形全等,可添加BE=CE;根据“AAS”可添加∠B=∠C;根据“ASA”可添加∠BAE=∠CAE;故答案为:BE=CE或∠B=∠C或∠BAE=∠CAE.【点睛】本题考查全等三角形的判定,全等三角形的常用的判定方法有SSS、SAS、AAS、ASA、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.熟练掌握全等三角形的判定定理是解题的关键.17、6【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【详解】解:∵所有内角都是135°,∴每一个外角的度数是180°-135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形考点:多边形的内角和外角点评:本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.18、(4,3).【解析】试题分析:由关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),可得:与点(4,-3)关于x轴对称的点是(4,3).考点:关于x轴、y轴对称的点的坐标.三、解答题(共78分)19、(1);(2)BE+CP=BC,理由见解析.【分析】(1)先证得为等边三角形,再利用平行线的性质可求得结论;(2)由BP、CE是△ABC的两条角平分线,结合BE=BM,依据“SAS”即可证得△BEO≌△BMO;利用三角形内角和求出∠BOC=120°,利用角平分线得出∠BOE=∠BOM=60,求出∠BOM,即可判断出∠COM=∠COP,即可判断出△OCM≌△OCP,即可得出结论;【详解】(1)∵,,∴为等边三角形,∴∠ACD=,∵,∴∠BAC=∠ACD=;(2)BE+CP=BC,理由如下:在BC上取一点M,使BM=BE,连接OM,如图所示:
∵BP、CE是△ABC的两条角平分线,∴∠OBE=∠OBM=∠ABC,在△BEO和△BMO中,,∴△BEO△BMO(SAS),∴∠BOE=∠BOM=60,∵BP、CE是△ABC的两条角平分线,
∴∠OBC+∠OCB=在△ABC中,∠BAC+∠ABC+∠ACB=180,
∵∠BAC=60,
∴∠ABC+∠ACB=180-∠A=180-60=120,
∴∠BOC=180-(∠OBC+∠OCB)=180=180-×120=120,∴∠BOE=60,∴∠COP=∠BOE=60
∵△BEO≌△BMO,
∴∠BOE=∠BOM=60,
∴∠COM=∠BOC-∠BOM=120-60=60,
∴∠COM=∠COP=60,
∵CE是∠ACB的平分线,
∴∠OCM=∠OCP,
在△OCM和△OCP中,∴△OCM≌△OCP(ASA),
∴CM=CP,
∴BC=CM+BM=CP+BE,
∴BE+CP=BC.【点睛】本题是三角形综合题,主要考查了角平分线的定义、三角形内角和定理、全等三角形的判定和性质,熟练掌握三角形内角和定理、全等三角形的判定和性质,证明∠CFM=∠CFD是解题的关键.20、(1)证明见解析;(2).【分析】(1)无论选甲还是选乙都是通过构建全等三角形来求解.甲中,通过证△AMB≌△BNC来得出所求的结论.乙中,通过证△AMB≌△ADN来得出结论;(2)按(1)的思路也要通过构建全等三角形来求解,可过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,将△AND绕点A旋转到△APB,不难得出△APM和△ANM全等,那么可得出PM=MN,而MB的长可在直角三角形ABM中根据AB和AM(即HF的长)求出.如果设DN=x,那么NM=PM=BM+x,MC=BC-BM=1-BM,因此可在直角三角形MNC中用勾股定理求出DN的长,进而可在直角三角形AND中求出AN即EG的长.【详解】(1)选甲:证明:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N∴AM=HF,BN=EG∵正方形ABCD,∴AB=BC,∠ABC=∠BCN=90°,∵EG⊥FH∴AM⊥BN∴∠BAM+∠ABN=90°∵∠CBN+∠ABN=90°∴∠BAM=∠CBN在△ABM和△CBN中,∠BAM=∠CBN,AB=BC,∠ABM=∠BCN∴△ABM≌△CBN,∴AM=BN即EG=FH;选乙:证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N∴AM=HF,AN=EG∵正方形ABCD,∴AB=AD,∠BAD=∠ADN=90°,∵EG⊥FH∴∠NAM=90°∴∠BAM=∠DAN在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN∴△ABM≌△ADN,∴AM=AN即EG=FH;(2)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,∵AB=1,AM=FH=∴在Rt△ABM中,BM=将△AND绕点A旋转到△APB,∵EG与FH的夹角为45°,∴∠MAN=45°,∴∠DAN+∠MAB=45°,即∠PAM=∠MAN=45°,从而△APM≌△ANM,∴PM=NM,设DN=x,则NC=1-x,NM=PM=+x在Rt△CMN中,(+x)2=+(1-x)2,解得x=,∴EG=AN=,答:EG的长为.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、图形的旋转变换等知识.通过辅助线或图形的旋转将所求的线段与已知的线段构建到一对全等或相似的三角形中是本题的基本思路.21、(1),证明见解析;(2)存在,证明见解析;(3)等腰三角形为△BEO,△CFO,,证明见解析.【分析】(1)根据角平分线的定义和平行线的性质可得∠EOB=∠EBO,∠FOC=∠FCO,进而可得EO=EB,FO=FC,然后根据线段间的和差关系即得结论;(2)同(1)的思路和方法解答即可;(3)同(1)的思路和方法可得EO=EB,FO=FC,再根据线段间的和差关系即得结论.【详解】(1)EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF=BE+CF;(2)当AB≠AC时,EF=BE+CF仍然成立.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵EF=EO+OF,∴EF=BE+CF;(3)等腰三角形为△BEO,△CFO,EF=BE﹣FC.理由如下:如图③,∵OB、OC平分∠ABC、∠ACG,∴∠ABO=∠OBC,∠ACO=∠OCG,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCG,∴∠EOB=∠EBO,∠FOC=∠ACO,∴EO=EB,FO=FC,∴△BEO与△CFO为等腰三角形,∵EF=EO-OF,∴EF=BE-CF.【点睛】本题考查了角平分线的定义、平行线的性质以及等腰三角形的判定等知识,属于常考题型,熟练掌握上述知识是解题的关键.22、(1)AE=;(2)AD=2,S△BDF=8;(3)不变,理由见解析【分析】(1)根据D为AB的中点,求出AD的长,在Rt△ADE中,利用30°所对的直角边等于斜边的一半求出AE的长即可;(2)根据题意得到设AD=CF=x,表示出BD与BF,在Rt△BDF中,利用30°所对的直角边等于斜边的一半得到BF=2BD,列出关于x的方程,求出方程的解得到x的值,确定出BD与BF的长,利用勾股定理求出DF的长,即可确定出△BDF的面积;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,由AD=CF,且△ABC为等边三角形,利用等边三角形的性质及锐角三角函数定义得到DE=FM,以及AE=CM,利用AAS得到△DEG与△FMC全等,利用全等三角形对应边相等得到EG=MG,根据AC=AE+EC,等量代换即可得证.【详解】解:(1)当D为AB中点时,AD=BD=AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=AD=;(2)设AD=x,∴CF=x,则BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根据勾股定理得:DF=4,∴S△BDF=×4×4=8;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,∵△ABC为等边三角形,∴∠A=∠ACB=∠FCM=60°,在Rt△ADE和Rt△FCM中,∴Rt△ADE≌Rt△FCM,∴DE=FM,AE=CM,在△DEG和△FMG,,∴△DEG≌△FMG,∴GE=GM,∴AC=AE+EC=CM+CE=GE+GM=2GE.【点睛】此题考查了全等三角形的判定与性质,等边三角形的性质,以及含30°直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23、见解析【解析】(1)先找到三角形各顶点关于原点的对称点,再依次连接得到△A′B′C′;(1)先连接AO,BO,CO,依次旋转得到A’’,B’’,C’’,再依次连接即可,再根据直角坐标系写出B’’的坐标.【详解】(1)△A′B′C′为所求;(2)△A″B″C″为所求,B″的坐标为(3,2)【点睛】此题主要考查旋转的作图,解题的关键是熟知旋转的性质先找到各顶点旋转后的顶点,再连接即可.24、(1)22.5°;(2)见解析【分析】(1)首先根据等腰直角三角形求出的度数,然后利用等腰三角形的性质和三角形内角和求出的度数,最后余角的概念求值即可;(2)作AF⊥CD交CD于点F,首先根据等腰三角形三线合一得出CF=FD=CD,∠FAD=∠CAB=22.5°,进一步可证明△AFD≌△CEB,则有BE=DF,则结论可证.【详解】(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°-67.5°=22.5°;(2)证明:作AF⊥CD交CD于点F,∵AD=AC,∴CF=FD=CD,∠FAD=∠CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=90°-67.5°=22.5°,∴∠CBE=45°+22.5°=67.5°,在△AFD和△CEB中,∴△AFD≌△CEB,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《仪器分析实验》大学教材笔记
- 为支撑引领新型工业化蓄势赋能
- 高中化学知识点归纳与分类突破:综合实验设计与评价
- 2024年高考化学二轮复习:离子反应(练习)
- 公司周年方案策划5篇
- 暑假实习小结(4篇)
- 开学安全第一课心得体会300字(31篇)
- 广告公司劳务合同范例9篇
- 心理健康教育培训心得体会
- 庆祝国庆节75周年领导致辞(3篇)
- 《道德与法治》三年级学情分析
- 校园禁烟承诺书(12篇)
- 国家开放大学《计算机网络》课程实验报告实验六-计算机网络综合性实-
- 学校教育统计工作计划方案
- 二十世纪中国文学经典与电影-知到答案、智慧树答案
- 湘少版英语五年级下册全册教案(教学设计)
- 缺血性心肌病
- 1960年文教群英会表彰名单
- 体育教师生涯发展展示
- 老旧小区物业管理方案
- 2021新教科版科学三年级上册教案全册,含教学反思
评论
0/150
提交评论