




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学辅助线(Juniorhighschoolmathematicsauxiliaryline)
Juniorhighschoolmathematicsauxiliaryline
1.triangleproblemaddingauxiliarylinemethod
Method1:questionsaboutthemiddlelineofatriangle,often
doublingthemiddle1ine.Itiseasytosolvetheproblemwith
themidpointoftheproblem,oftenusingthemiddlelineofthe
triangle.
Method2:thesubjectthatcontainsthebisector,oftentakes
theangularbisectorasthesymmetryaxis,andusestheproperty
ofthebisectorandtheconditioninthequestiontoconstruct
thecongruenttriangle,thussolvestheproblembyusingthe
knowledgeofcongruenttriangle.
Method3:theconclusionisthatthetwolinesegmentsareequal,
theauxiliarylinesareoftendrawnintocongruenttriangles,
orsometheoremsaboutthebisectionlineareused.
Method4:conclusionisalinewithanotherlineandthethird
lineisequaltothiskindofproblems,oftenwithlongorshort
cutmethod,theso-calledtenniniallymethodistoputthethird
linesaredividedintotwoparts,onepartofthecardisequal
tothefirst1ine,andtheotherpartisequaltosecondlines.
Theaddingmethodofauxiliarylinein2.parallelogram
Theparallelogram(includingrectangular,square,diamond)two
groupofdiagonalanddiagonaledges,hassomeofthesame
nature,sotherearealsocommoninaddingauxiliarylinemethod,
theobjectiveistocreatelineparallel,vertical,similar,
congruenttriangles,theparallelogramproblemintoatriangle,
squareandotherissuesofcommonprocessing,hasthefollowing
severalcommonmethods,forexamplesimplesolutionsas
follows:
(1)diagonalortranslationdiagonal:
(2)theverticalstructureoftheedgeoppositethevertex;the
righttriangle
(3)parallellinesconnectingthediagonalintersectionpoint
withthemidpointofonesideorthediagonalintersectionpoint
areconstructed,andtheparallelormiddlelineoftheline
segmentisconstructed
(4)alinesegmentconnectingthevertextoapointonthe
oppositeedgeorextendingtheline,constructingatriangle,
asimilaroranequaltriangle.
(5)makeadiagonallineperpendiculartothevertexandform
alineparallelortrianglecongruent
3.laddercommonlyusedintheauxiliarylineoftim
Atrapeziumisaspecialquadrilateral.Itisasynthesisof
parallelogramandtriangleknowledge.Byaddingproper
auxiliary1ines,thetrapezoidalproblemisreducedtoa
parallelogramoratriangleproblem.Theauxiliarylineis
addedasabridgetosolvetheproblem:
(1)moveonewaistinthetrapezoid.
(2)trapezoidoutsidetranslationonewaist
(3)insidetheladder,movetwowaist
(4)extendtwowaist
(5)theendsofthetopandbottomoftheladderarehigh
(6)translationdiagonal
(7)connecttheacmeofaladderandthemidpointofawaist.
(8)themidpointofonewaististheparallellineoftheother
waist.
(9)makemiddlepositionline;
Ofcourse,intherelevantdemonstrationandcalculationofthe
ladder,theauxiliarylinesaddedarenotnecessarilyfixedand
single.Itisthekeytosolvetheproblemofturningthe
trapeziumproblemintoparallelogramortrianglethroughthe
auxiliarylineofthebridge.
Amethodofmakingauxiliarylines
I.midpoint,middleline,extension1ine,parallelline.
Apointincaseofconditionsinline,themedian1ine,then
amidpoint,extendthemidlineormedianlineastheauxiliary
line,theextensionofasegmentisequaltothemedianline
orline;anotherauxiliarylineisthemidpointforparallel
linesorlinesegmentsknownside,inordertoachievethe
applicationofatheoremthepurposeofmakingorhelp.
Two:vertical,bisector,flip,congruent,even.
Incaseswherethereisabisectoroftheverticalortheangle,
thegraphcanberotatedby180degreesbythemethodofaxial
symmetryandbyotherconditions,andthecontourofthe
auxiliarylinewillcomeintobeing.Thesymmetryaxisisoften
thebisectoroftheverticalortheangle.
Three:experimentiftheedgesareequalandrotated.
Apolygononbothsidesofthecornersincaseofequalorequal
conditionsinthecorner,sometimeswitheachother,thenthe
angleofgraphrotationtosomeextent,youcangetcongruent,
thenauxiliarylinepracticesstillcomeintobeing.Thecenter
ofsymmetryvariesfromsubjecttocenter,sometimeswithout
center.Itcanbedividedinto"heart"and"nomind“rotation
ofthetwo.
Four:maketheangle,theflat,thesimilar,thedifference,
thedifference,theproductandthecommercialview.
Apolygononbothsidesofthecornersincaseofequalorequal
conditions,tosegmentorangleanddifferenceproductisoften
associatedwithsimilarbusiness.Inmakingtwotrianglesalike,
therearegenerallytwoways:first,tocreateanauxiliary
angleequaltotheknownangle;second,tomovealineinthe
triangle.Averse:"angle,flat,similaranddifferenceproduct
dealerssee.”
Five:areatofindthebottomhigh,multilateralchangethree
sides.
Inthecaseofthearea,thesquareandtheproductoftheline
segmentintheconditionandtheconclusioncanstillbe
regardedastheareaofthesolution,andoftenthebottomor
theheightistheauxiliaryline,whiletheequalbottomor
equalheightofthetwotriangleisthekeytothethinking.
Ifapolygonisencountered,theideaiscutupintoatriangle;
otherwise,itisestablished.
Inaddition,MingandQingDynastiesinChinaareafor
mathematicianstoprovethePythagoreantheorem,theauxiliary
lineapproach,namely"patching“hasmorethan200kinds,most
oftheareaattheendofthree,themultilateralboundary”.
Juniorhighschoolgeometrycommonauxiliarylineformula
Peoplesaygeometryisverydifficult,andthedifficultyis
intheauxiliaryline.Auxiliaryline,howtoadd?Grasp
theoremsandconcepts.
Wemuststudyhard,findoutthelaw,andrelyonexperience.
Triangle
Thegraphhasanangularbisectorthatcanbeperpendicularto
bothsides.Youcanalsolookatthefigureinhalf,symmetrical,
thentherelationshipis.
Anglebisector,parallelline,isoscelestriangletoadd.Angle
bisector,plusverticalline,trythreelinestogether.
A1ineofverticalbisector,oftenjoinedtobothends.Line
segmentsanddifferences,andhalftimes,extended,shortened,
andtestable.
Thelinesegmentsanddifferenceinequalitiesmovetothesame
triangle.Themiddleofthetriangleistwopoints,andthe
connectionisamiddleline.
Thereisamiddlelineinthetriangle,extendingthemiddle
lineandsoon.
Quadrilateral
Theparallelogramappearsandthecenterofsymmetrydivides.
Theproblemhowtoconvertladder,anddelta.
Movethewaist,movediagonally,andlengthenthetwowaistto
makeithigh.Ifthereisamiddlepointofthewaist,carefully
connectthemiddleline.
Theabovemethoddoesnotwork,overwaistmidpointcongruent
creation.Similartotheline,lineparalleltothehabit.
Theplotratioformulaisthekeysegmentforchange.Direct
proofofdifficulty,equalsubstitution,lesstrouble.
Thehypotenuseaboveline,alargeproportionofitems.
Examplesofcommonlyusedmethodsforassistinglinesin
triangles
Onetimesthecenterline
1:ABCADBCisknown,onthesideofthemidline,asanisosceles
righttrianglewithABedge,ACedgeisrectangularshape
anisotropy,asshowninFigure5-2,confirmationofEF=2AD.
Two,takefromauxiliary1inemethod.
InABC,AD/BAC/ACBsplit,/B=2,AB=ACCDconfirmation.
Three,extendtheknownsidestructuretriangle:
Forexample:Figure7-1:givenAC=BD,ADACinAgroup,BC
groupofBDinB:AD=BC,confirmation
Analysis:toAD=BC,ofwhichcontainAD,BCthereareseveral
congruenttriangles,DeltaADCanddeltaplan:BCD,DeltaAOD
anddeltaBOC,DeltaABDanddeltaBAC,butaccordingtothe
existingconditionsarenotequaltothedifferenceofangle
congruentcard,therefore,cantrytomakeanewangle.Letthe
angleastwotriangularpublicangle.
Proof:extendedDA,CB,respectively,andtheirelongationat
Epoint,
ADACBCgroupBDgroupofdreams(known)
L/CAE/DBE==90DEG(verticaldefinition)
InthedeltaDBEanddeltaCAE
Dreams
StardeltaDBE=CAE(AAS)
ED=EB=EA*EC(congruenttrianglescorrespondingequal
sides)
L=EDEAECEB
Namely:AD=BC.
Whenconditionsareinsufficient,newconditionscanbecreated
byaddingauxiliarylinestocreateconditionsforthequestion
Four,connectthequadrilateraldiagonal,thequadrilateral
problemintoatriangletosolve.
Forexample:asshowninfigure8-1:AB,CD,ADandBCprovethat
AB=CD.
Analysis:thegraphisquadrilateral,weonlylearnthe
knowledgeabouttriangle,andmusttransformitintotriangle
tosolve.
Proof:connectAC(orBD)
ABCDADBC"Dreams”(known)
L/l=2/3=4,//(twolineparallel,alternateanglesequal)
InthedeltaABCanddeltaCDA
Dreams
StardeltaABC=CDA(ASA)
ABCD(r=congruenttrianglescorrespondingequalsides)
Five.Thelineisusuallyextendedwhenthereisalinesegment
perpendiculartotheanglebisector.
Forexample:asshowninFigure9-1:inRtDeltaABC,AB=AC
/BAC=90/1=2DEGangle,theextensionofBDinECEgroup.
Confirmation:BD=2CE
Analysis:toBD=2CE,thoughttoconstructthesegments2CE,
CEandABCanglebisectorandvertical,thoughttoextendthe.
Proof:extendedBAandCEtopointF,respectively.
BECF(known)groupofdreams
L/BEF/BEC==90DEG(verticaldefinition)
InthedeltaBEFanddeltaBEC,
Dreams
StardeltaBEF=BEC(ASA)*CE=FE=CF(congruenttriangles
correspondingequalsides)
AnCF/BAC=90〜BEdreams(known)
L/BAC/CAF==90deg/1+/BDA=90deg/1+/BFC=90
DEG
L/BDA=/BFC
InthedeltaABDanddeltaACF
StardeltaABD=ACF(AAS)*BD=CF(congruenttriangles
correspondingequalsides)*BD=2CE
Six.Connecttheknownpointsandconstructcongruent
triangles.
Forexample:known:figure10-1;ACandBDintersectat0,and
AB=DC,AC=BD/A/D=confirmation.
Analysis:Card/A=/D,permittheirtriangleDeltaABOand
deltaDCOcongruent,andonlyAB=DCandtheverticalangle
ofthetwoconditions,acondition,topermitthecongruent,
onlytofindanotherothercongruenttriangles,AB=DC,AC=
BD,ifconnectBC,DeltaABCandDeltaDCBiscongruent,soget
/A=/D.
Proof:connectBC,DeltaABCanddeltaDCBin
Dreams
StardeltaABC=DCB(SSS)
L/A/D=(congruenttrianglescorrespondingequalsides)
Seven,takelinesegments,midpointstructure,congruent,
threetangible.
Forexample:figure11-1:AB=DC/A=/D/ABC/DCB=
confirmation.
Analysis:AB=DC/A=D/AD,thoughtofasthemidpointof
N,NC,NBconnection,thentheSASaxiomsofdeltaABNDelta
DCN=,soBN=CN,ABN=//DCN.Theonlycard/NBC=M/NCB,
andBCMN,themidpointconnection,theSSSaxiomsofdeltaNBM
=NCM/NBC=NCB/so.Proofofproblem.
Proof:takethemidpointofAD,BC,N,M,connectNB,NM,NC.
ThenAN=DN,BM=CM,
InthedeltaABNanddeltaDCN
Dreams
StardeltaABN=DCN(SAS)
L/ABN=NB/DCN=NC(congruenttrianglescorrespondingedges,
equalangles)
InthedeltaNBManddeltaNCM
Dreams
StardeltaNMB=NCM,r=(SSS)/NBC/NCB(congruenttriangles
correspondingequalangles)/NBC/ABN/r=NCB/DCN/ABC
/DCB=namely.
Twotheauxiliarylinethatisinducedbythebisectorofangles
Formula:abisectorgraph,tomakebothsidesofthevertical.
Youcanalsolookatthefigureinhalf,symmetrical,thenthe
relationshipis.Anglebisector,parallel1ine,isosceles
triangletoadd.Anglebisector,plusverticalline,trythree
linestogether.
Theangularbisectorhastwoproperties:Aandsymmetry;Band
thebisectorofthebisectoroftheangularbisectorareequal
tothedistanceofthetwosidesofthecorner.Thereare
generallytwokindsofauxiliarylineswithangularbisector.
Averticallinefromonepointtotheotherfromthebisector;
Theuseofangularbisectortoconstructsymmetricalfigures
(e.g.,cuttingshortedgesonthelongsideofaside).
Normally,whenarightorverticalconditionoccurs,avertical
lineisusuallyconsidered;inothercases,asymmetric
structureisconsidered.Asforwhichmethodtochoose,combine
thetitle,graphandknownconditions.
Anauxiliarylinewithanangle
(I)interception,construction,congruence
Theproofofgeometryliesinthesuppositionandtheattempt,
butthiskindofattemptandthesuppositionareincertainlaw
basicabove,hopedschoolmatescangraspthecorrelation
geometrylaw,
Insolvinggeometryproblems,trytoguessandtryaccording
tocertainrules.Thefollowingisabriefintroductiontothe
auxiliarylinesinvolvedinthetheoremscommontogeometry.
Figure1-1/AOC=/BOC,suchas0E=0F,DE,DFandconnectwith
deltaOED,DeltatownofOFD,thuscreatingconditionsforour
proofline,angle.
Figure1-2,AB//CD,BE/BCD/CEsplit,splitBCD,EinAD,
toverify:BC=AB+CD.
Analysis:thisproblemisrelatedtotheanglebisectorofangle
bisector,canbeusedtoconstructthesolutionofcongruent
triangles,dividethelinetoconstructtheaxisofsymmetry,
andtheproblemisthatlineandthebadtimesproblem.The
methodintheproofoflinesegmentandthebadtimestothe
commonproblemistoextendthemethodorinterceptmethodto
prove,extendtheshortlineorinalonglinetointercepta
portionofthelengthisequaltotheshortline.Butwhether
orextendedtoprovetheequallineintercept,extendedtoprove
thattheextensionofthelineandalinesegmenttoproveequal
interceptioninterceptionaftertherestofthelinewithan
equal,andachievethepurposeoftheproof.
Simpleproof:inthisquestion,wecaninterceptBF=ABonlong
segmentBC,andthenproveCF=CD,soastoachievethepurpose
ofproof.Thisusesangularbisectortoconstructcongruent
triangles.Anothercongruentselfproof.Theproofofthis
problemcanalsobeextendedtotheextensionlineofBEand
CDtoproveitatonepoint.Tryityourself.
(two)theverticallineonbothsidesoftheanglelineisequal
totheverticalline
Theangleofthebisectorisperpendiculartobothsidesofthe
bisector,andtheproblemisprovedbythedistancebetweenthe
pointsonthebisectorofthebisectorandthedistancebetween
thetwosides.
Figure2-1,knownasAB>AD,CD=BC/BAC=/FAC.
Proof:/ADC+/B=180?
Analysis:fromC/BADtobothsidesofthevertical.InC/
ADCandangleBandangle.
(three)theverticalstructureofangularbisector;isosceles
triangle
Theverticalangularbisectorfromacornerontheside,sothat
bothsidesandcorneroftheintersection,thencutanisosceles
triangle,pedalforthemidpointonthebottom,theangle
bisectorandbeonthebottomlineandhigh,onetothreelines
bynatureandnatureinisoscelestrianglethebitline,(if
thereisalinesegmentperpendiculartotheangularbisector
inthesubject,thelineisextendedtointersecttheotherside
ofthecorner).
Knownas:3-1,AB>AC/BAD=/DAC,CD,ADinDgroup,Histhe
midpointofBC.
Confirmation:DH=(AB-AC)
Analysis:theextensionofCDandtheintersectionofABat
pointEarecongruenttriangles.Problemprovable.
(four)parallellinesontheothersideofthecornermadefrom
apointontheangleline
Inthecaseofanangularbisector,theparallellineofone
sideofthebisectoronthebisectorofthebisectoris
constructedtoformanisoscelestriangle.Theparallel1ines
oftheangularbisectorareintersectedwiththereverse
extensionlineontheotherside,soanisoscelestriangleis
alsoformed.Asshowninfigures4-1and4-2.
Threebythelineandthedifferencetothinkoftheauxiliary
line
Formula:
Linesegmentsanddifferences,andhalftimes,extended,
shortened,andtestable.Thelinesegmentsanddifference
inequalitiesmovetothesametriangle.
Whenprovingalineequaltotheothertwolinesandwhenthe
generalmethodisonlythenmethod:
1.Length:acutinalonglineisequaltooneoftheother
two,andthenprovesthattheremainderisequaltotheother;
2,improve:ashort1ineextension,theextensionpartisequal
toanothershortsegment,andthenprovethatthenewlineis
equaltothelengthofline.
Toprovetheinequalityoflineanddifference,itisusually
associatedwiththesumoftwolinesinatriangleisgreater
thanthirdsides,andthedifferenceislessthanthirdsides,
soitcanbeprovedinatriangle.
Inthethreesidesofatrianglerelationshipthatunequal
relationshipbetweenthesegment,suchasdirectevidence,can
connecttwooralongTingedgetoformatriangle,theline
appearsintheconclusioninoneorseveraltriangles,and
provedwiththeunequalrelationshipbetweenthethreesides
ofatriangle,suchas:
Inthetrianglecornerandcorneritisnotgreaterthanany
adjacentifdirectcertificatedoesnotcomeout,canconnect
twoorasideextension,
Toverifythestructureofthetriangle,atriangleinthe
Bighornangleposition,smallangleintheinteriorposition
ofthetriangle,theexteriorangletheorem:
Fourtheauxiliarylinethatcomesfromthemiddlepoint
Formula:
Themiddleofthetriangleistwopoints,andtheconnection
isamiddleline.Thereisamiddlelineinthetriangle,
extendingthemiddlelineandsoon.
Inatriangle,ifalittleisknownonthesideofatriangle
midpoint,itshouldfirstthinkoftriangle1ine,middle1ine,
doublecenterlineextendinganditsrelatedproperties
(hypotenuselineproperties,isoscelestrianglebottommidline,
thenthroughtheexplorationofnature),findawaytosolve
theproblem.
(1)themidlinedividestheoriginaltriangleintotwosmall
trianglesofequalsize
AsFigure1,ADisaABCline,SABD=SACD=SABC(deltadelta
deltadeltaABDanddeltaACDisbecausethebottomlevel).
Example1..InFigure2,inDeltaABC,ADisthemedian1ine,
extendingADtoE,andmakingDE=ADandDFthemiddleofdelta
DCE.TheareaoftheknownDeltaABCis2,andtheareaofthe
deltaCDFis.
Solution:becauseADisthemiddlelineofABC,soS,ACD=S,
ACD=1,ABC=,2=1,andbecauseCDisthemiddlelineofdelta
ACE,soS,Delta,CDE=S,delta,
SinceDFisthemiddlelineofdeltaCDE,soS,Delta,CDF=S,
Delta,CDE=*1=.
StardeltaCDFarea.
(two)themiddle1ineofthetriangleshouldbeconsideredfrom
themiddlepoint
Example2..AsshowninFigure3,inthequadrilateralABCD,
AB=CD,E,FarethemidpointofBCandAD,andtheextended1ines
ofBAandCDarerespectivelyEFextension1inesGandH.Proof:
/BGE=/CHE.
Proof:1inkBDandtakethemidpointofBDasM,andconnect
ME,MF,
DreamsMEisthemedianlineofthedeltaBCD,
RMECD,R/MEF=/CHE,
DreamsMFisthemedianlineofthedeltaABD,
RMFAB,R/MFE=/BGE,
AB=CDME=MFdreams,peryleneperylene/MEF=/MFE,
WhichangleBGE=angleCHE.
(three)themiddlelineshouldthinkofextendingthemiddle
line
Example3.,figure4,knowninDeltaABC,AB=5,AC=3,evenBC
onthecentrallineAD=2,thelengthoftheBC.
Solution:extendADtoE,makeDE=AD,thenAE=2AD=2*2=4.
InaACDandaEBD/ADC=/AD=ED,dreams,EDB,CD=BD,
StardeltaACD=EBD,RAC=BE,
ThusBE=AC=3.
InABE,forAE2+BE2=42+32=25=AB2,theangleE=90degrees,
RBD===,soBC=2BD=2.
4.casesofFigure5,knownasdeltaABC,ADisthebisector
ofangleBAC,ADandBConthesideofthemidline.Confirmation:
DeltaABCisisoscelestriangle.
Proof:extendADtoE,makeDE=AD.
Examp1e3provable:
DeltaDeltaBED=CAD,
TheEB=AC/E=/2,
And/1=/2,
L/1=/E,
AB=EBandAB=AC,namelyR,DeltaABCisanisoscelestriangle.
(four)thenatureofthecenterlineoftherightangled
triangle
5.casesofFigure6,knownasAB//DCABCD,ACladder,BCgroup,
ADgroupBD,verify:AC=BD.
Proof:ABDE,CEEpoint,link,DE,CErespectivelyRtDelta
ABD,DeltaABCRtABonthehypotenuseline,theDE=CE=AB/CDE=
/DCE,therefore.
AB//DCdreams,
L/CDE=/DCE=/2/1,
L/1=/2,
InDeltaADEanddeltaBCE,
DE=CE/1=/imprisonment,2,AE=BE,
StardeltaADEDeltaBCE=AD=BC,R,thusABCDistrapezoid
isoscelestrapezoid,soAC=BD.
(five)thebisectoroftheangleandthelineofaverticalline
shouldbethoughtofthemiddlelineoftheisoscelestriangle
(six)midlineextension
Auxiliarylineofcongruenttriangles
Themethodoffindingcongruenttriangles:
(1)wecanproceedfromtheconclusiontoseewhichtwopossible
congruenttrianglesaretobeprovedinthetwoequalsegments
(orangles);
(2)fromtheknownconditions,wecanseewhichtwotriangles
areequalunderthegivenconditions;
(3)consideringtheconditionsandconclusions,theycan
determinewhichtwotrianglesarecongruentwitheachother;
(4)iftheabovemethodsarenotpossible,wemayconsider
addingauxiliarylinestoformcongruenttriangles.
Themethodofcommonauxiliarylineintriangle:
Extendingthemiddle1ineandconstructingcongruent
triangles;
Usingfoldingtoconstructcongruenttriangles;
Third,drawparallellinesandconstructcongruenttriangles;
Makeisoscelestriangleofconnectionstructure.
Commonauxiliarylinemethodhasthefollowingseveralkinds:
Theisoscelestrianglecanbeusedastheheightonthebottom
edge,andtheproblemissolvedbythenatureof"three1i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宣威市来宾一中学2025届初三中考“集结号”最后冲刺模拟卷数学试题含解析
- 沈阳大学《中国历史地理》2023-2024学年第二学期期末试卷
- 石家庄学院《过程控制》2023-2024学年第二学期期末试卷
- 六盘水幼儿师范高等专科学校《播音与主持艺术概论》2023-2024学年第一学期期末试卷
- 四川司法警官职业学院《城市社会学》2023-2024学年第二学期期末试卷
- 内江卫生与健康职业学院《中国文化概要与英译》2023-2024学年第一学期期末试卷
- 四川艺术职业学院《新生研讨》2023-2024学年第二学期期末试卷
- 四川科技职业学院《债权法专题》2023-2024学年第二学期期末试卷
- 辽宁商贸职业学院《印度社会专题》2023-2024学年第二学期期末试卷
- 江苏师范大学《植物显微技术》2023-2024学年第二学期期末试卷
- 美术四年级国测模拟题(满分50分)附有答案
- 中国老年糖尿病诊疗指南(2024版)解读
- 2024年度保密教育线上培训考试题库新版
- 快递驿站承包协议书
- 人教版语文七年级下生字词练习看拼音写词语
- 地坪漆专项施工方案及流程
- 2024年北京海淀区高三二模语文试题和答案
- 病原微生物实验活动风险评估表
- 水工艺与工程新技术智慧树知到期末考试答案章节答案2024年西安建筑科技大学
- 小学三年级下册 译林版英语:期中复习重点整合
- 电缆敷设施工技术经验分享与案例分析重难点施工技术分享与讨论
评论
0/150
提交评论