版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
必备知识·逐点夯实第2课时函数模型及其应用第三章函数及其应用核心考点·分类突破【课标解读】【课程标准】1.了解指数函数、对数函数与一次函数增长速度的差异.2.理解“指数爆炸”“对数增长”“直线上升”等术语的含义.3.会选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.【核心素养】直观想象、数学运算、数学建模.【命题说明】考向考法高考命题常以指数、对数、幂函数及分段函数为载体,考查利用函数模型解决实际问题,与指数、对数函数相关的数学文化、社会热点等问题是高考热点,常以选择题形式出现.预测预计2025年高考会考查指数函数模型或对数函数模型在生活实际中的应用,以选择题的形式出现.必备知识·逐点夯实知识梳理·归纳1.三种函数模型的性质
函数性质
y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳2.常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)与反比例函数相关的模型f(x)=+b(k,b为常数且k≠0)与指数函数相关的模型f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)与对数函数相关的模型f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0)与幂函数相关的模型f(x)=axα+b(a,b,α为常数,a≠0,α≠0)微点拨
函数模型应用问题的步骤(四步八字方针):审题,建模,解模,还原.常用结论
1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.
类型辨析改编易错高考题号1243×××(4)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)的增长速度.(
)√提示:(1)打折出售的售价为100×(1+10%)×=99(元).所以每件赔1元.×(2)当x=2时,2x=x2=4.×(3)如a=x0=,n=,不等式成立.×
核心考点·分类突破考点一用函数图象刻画变化过程[例1](多选题)该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人使用该药物的说法中,正确的是(
)A.首次服用该药物1单位约10分钟后,药物发挥治疗作用B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒【解析】选ABC.从题中图象可以看出,首次服用该药物1单位约10分钟后药物发挥治疗作用,A正确;首次服用该药物1单位约1小时后的血药浓度达到最大值,当两次服药间隔小于2小时时,一定会产生药物中毒,B正确;服药5.5小时时,血药浓度等于最低有效浓度,此时再服药,血药浓度增加,可使药物持续发挥治疗作用,C正确;第一次服用该药物1单位4小时后与第2次服用该药物1单位1小时后,血药浓度之和大于最低中毒浓度,因此一定会发生药物中毒,D错误.解题技法判断实际问题变化过程的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象;(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
声源与声源的距离/m声压级/dB燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3,则(
)A.p1≥p2 B.p2>10p3C.p3=100p0 D.p1≤100p2
解题技法求解已知函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.
考点三构造函数模型的实际问题角度1
构造二次函数模型[例3]如图所示,一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是am(0<a<12),4m,不考虑树的粗细,现在用16m长的篱笆,借助墙角围成一个矩形的花园ABCD.设此矩形花园的面积为Sm2,S的最大值为f(a),若将这棵树围在花园内,则函数u=f(a)的图象大致是(
)
角度2
构造指数函数、对数函数模型[例4]基本再生数R0与世代间隔T是某流行性传染病的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在该传染病初始阶段,可以用指数模型:I(t)=ert描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在该传染病初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)(
)A.1.2天 B.1.8天C.2.5天 D.3.5天
(1)请写出报警距离d(米)与车速v(米/秒)之间的函数关系式,并求当k=2时,当汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间;阶段准备人的反应系统反应制动时间t0t1=0.8秒t2=0.2秒t3距离d0=10米d1d2d3=米
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化活动降水施工合同
- 体育场馆物业招投标指南
- 环保家电生产线施工合同
- 体育馆节能保温施工协议
- 健康贷款证明操作手册
- 出版社水电节约方案
- 混合现实施工合同
- 经济特区城市更新与房地产市场
- 天津港保税区民间艺术发展策略
- 数据breach一次性补偿
- 留守儿童的家庭教育-课件
- 12-14mm带压开孔器操作说明书
- 提高预制楼梯安装一次性合格率-QC成果报告
- 电线装配制程cableassemblyprocessinstruction
- 幼儿园中班语言《谁偷吃了》课件1
- 普通高中数学课程标准
- 重度残疾儿童小学送教上门工作计划
- 科创板问题测试题库300题试题及答案
- 4.2特异性免疫说课课件2021-2022学年高二上学期生物人教版选择性必修1
- 安全培训教育计划表模板范本
- 网页制作ppt课件(完整版)
评论
0/150
提交评论