版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年黑龙江省伊春市铁力市第四中学九上数学开学检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点P(a,2)在第二象限,则a的值可以是()A. B.0 C.1 D.22、(4分)某种材料的厚度是0.0000034m,0.0000034这个数用科学记数法表示为()A.0.34×10-6 B.3.4×10-63、(4分)如图,两直线和在同一坐标系内图象的位置可能是()A. B.C. D.4、(4分)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为()A. B. C. D.5、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为()A.2 B.4 C. D.36、(4分)菱形具有而平行四边形不具有的性质是()A.对角线互相垂直 B.对边平行C.对边相等 D.对角线互相平分7、(4分)如图是某种产品30天的销售图象,图1是产品日销售量y(件)与时间t(天)的函数关系,图2是一件产品的利润z(元)与时间t(天)的函数关系.则下列结论中错误的是()A.第24天销售量为300件 B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元 D.第15天与第30天的日销售量相等8、(4分)若关于x的方程=0有增根,则m的值是A.3 B.2 C.1 D.-1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将直线向上平移一个单位长度得到的一次函数的解析式为_______________.10、(4分)如图,矩形ABCD中,AB=,AD=1.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.11、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为_____.12、(4分)如图,在平面直角坐标系xOy中,一次函数y1=ax+b与反比例函数y2=mx的图象交于点A(-2,1),B(1,-2).13、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.三、解答题(本大题共5个小题,共48分)14、(12分)某水厂为了了解小区居民的用水情况,随机抽查了小区10户家庭的月用水量,结果如下表:月用水量()1013141718户数22321如果小区有500户家庭,请你估计小区居民每月(按30天计算)共用水多少立方米?(答案用科学记数法表示)15、(8分)如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.16、(8分)如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.(1)在图中,求证:,.(2)在图中,仍有(1)中的,成立,请解答下面问题:①若,,,求和的长;②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.17、(10分)如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上的数大1,则我们称这样的自然数叫“美数”,例如:123,3456,67,…都是“美数”.(1)若某个三位“美数”恰好等于其个位的76倍,这个“美数”为.(2)证明:任意一个四位“美数”减去任意一个两位“美数”之差再减去1得到的结果定能被11整除;(3)如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,则我们称这样的自然数叫“妙数”,若任意一个十位为为整数)的两位“妙数”和任意一个个位为为整数)的两位“美数”之和为55,则称两位数为“美妙数”,并把这个“美妙数”记为,则求的最大值.18、(10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=________米/分;
(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.20、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.21、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)22、(4分)化简:+=___.23、(4分)数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则二、解答题(本大题共3个小题,共30分)24、(8分)某汽车销售公司经销某品牌款汽车,随着汽车的普及,其价格也在不断下降.今年5月份款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的款汽车,已知款汽车每辆进价为7.5万元,款汽车每辆进价为6万元,公司预计用不多于105万元且不少于102万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果款汽车每辆售价为8万元,为打开款汽车的销路,公司决定每售出一辆款汽车,返还顾客现金万元,要使(2)中所有的方案获利相同,值应是多少?25、(10分)定义:我们把对角线相等的四边形叫做和美四边形.(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.(2)如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,∠AOB=60°,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.26、(12分)如图所示,已知是的外角,有以下三个条件:①;②∥;③.(1)在以上三个条件中选两个作为已知,另一个作为结论写出一个正确命题,并加以证明.(2)若∥,作的平分线交射线于点,判断的形状,并说明理由
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据第二象限内点的横坐标是负数判断.【详解】解:∵点P(a,1)在第二象限,∴a<0,∴-1、0、1、1四个数中,a的值可以是-1.故选:A.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、B【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10−1.故选:B.此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、D【解析】
根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.【详解】根据一次函数的系数与图象的关系依次分析选项可得:
A、由图可得,中,,,中,,,不符合;
B、由图可得,中,,,中,,,不符合;
C、由图可得,中,,,中,,,不符合;
D、由图可得,中,,,中,,,符合;
故选:D.本题考查了一次函数的图象问题,解答本题注意理解:直线所在的位置与的符号有直接的关系.4、B【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】根据勾股定理,AB=,BC=,AC=,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=AB=.故选B.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.5、B【解析】
由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选B.本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6、A【解析】
根据菱形及平行四边形的性质,结合选项即可得出答案.【详解】A、对角线互相垂直是菱形具有,平行四边形不具有的性质,故本选项正确;B、对边平行是菱形和平行四边形都具有的性质,故本选项错误;C、对边相等是菱形和平行四边形都具有的性质,故本选项错误;D、对角线互相平分是菱形和平行四边形都具有的性质,故本选项错误.故选A.此题考查了平行四边形及菱形的性质,属于基础题,关键是熟练掌握特殊图形的基本性质.7、D【解析】
根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=-x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=t+100,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【详解】A、根据图①可得第24天的销售量为300件,故A正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,当x=10时,z=-10+25=15,故B正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:∴y=-+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选D.本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.8、B【解析】试题分析:若关于x的方程=0有增根,则x=1为增根.把方程去分母可得m-1-x=0,把x=1代入可得m-1-1=0,解得m=2.考点:分式方程点评:本题难度较低,主要考查学生对分式方程知识点的掌握,增根使分式分母为零.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
解:由平移的规律知,得到的一次函数的解析式为.10、1、、1﹣【解析】
过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四边形AGCE是平行四边形,∴CE=AG=1,∴BE=1∴当BE=1时,△CDF是等腰三角形;②DF=DC时,则DC=DF=,∵DF⊥AE,AD=1,∴∠DAE=45°,则BE=,∴当BE=时,△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB=,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,,x1﹣4x+1=0,解得:x=1±,∴当BE=1﹣时,△CDF是等腰三角形.综上,当BE=1、、1﹣时,△CDF是等腰三角形.故答案为:1、、1﹣.此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.11、﹣2<x<2【解析】
先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【详解】∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为故答案为本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.12、x<-2或0<x<1.【解析】
利用图像即可求出不等式的解集.【详解】结合图像可知:当x<-2或0<x<1时,关于x的不等式ax+b>mx故答案为x<-2或0<x<1.题考查了反比例函数和一次函数的交点问题,解题的关键是灵活运用数形结合的思想.13、504m2【解析】
由OA=2n知OA=+1=1009,据此得出AA=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA=2n,∵2018÷4=504…2,∴OA=+1=1009,∴AA=1009-1=1008,则△OAA的面积是×1×1008=504m2此题考查规律型:数字变换,解题关键在于找到规律三、解答题(本大题共5个小题,共48分)14、该小区居民每月共用水约为立方米.【解析】
根据平均数的概念计算,并用样本平均数去计算该小区居民每月用水量.【详解】解:由已知得:10户家庭平均每户月用水量为(立方米)答:该小区居民每月共用水约为立方米.考查了平均数的计算和用样本估计总体的知识,解题关键是抓住用样本平均数去计算该小区居民每月用水量.15、(1)m=2,k=4;(2)AB=1.【解析】分析:(1)将点P(2,m)代入y=x,求出m=2,再将点P(2,2)代入y=,即可求出k的值;(2)分别求出A、B两点的坐标,即可得到线段AB的长.详解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4-1=1.点睛:本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.16、(1)见解析;(2)①,,②,,见解析.【解析】
(1)由平行线的性质和角平分线的性质即可证明结论;(2)①由(1)题的思路可求得FG的长,再证明△BCG是等边三角形,从而得,过点作交延长线于点,在Rt△AFH中用勾股定理即可求出AF的长;②若使点恰好落在边上且为等腰三角形,易得F、G两点重合于点E,再结合(1)(2)的结论进行分析即可得到结论.【详解】解:(1)∵四边形是平行四边形,∴,.∴,又∵、是与的角平分线,∴,即∠AEB=90°,∴,∵,∴,又∵是的角平分线、∴,∴.同理可得.∴;(2)解:①由已知可得,、仍是与的角平分线且,,,,.如图,过点作交延长线于点.∵,,..∵,,,,,,.②,(类似答案均可).若使点恰好落在边上,则易得F、G两点重合于点E,又由(1)(2)的结论知,,所以平行四边形的边应满足;若使点恰好落在边上且为等腰三角形,则EA=EB,所以∠EAB=∠EBA,又因为、仍是与的角平分线,所以∠CBA=∠BAD=90°,所以∠C=90°.本题考查了平行四边形的性质、角平分线的概念、平行线的性质、垂直的定义、等腰三角形和等边三角形的判定和性质、勾股定理和30°角的直角三角形的性质,考查的知识点多,综合性强,解题的关键是熟练掌握上述知识,弄清题意,理清思路,注重知识的前后联系.17、(1)456(2)见解析(3)42【解析】
(1)设这个“美数”的个位数为x,则根据题意可得方程,解方程求出x的值即可得出答案.(2)设四位“美数”的个位为x、两位“美数””的个位为y,分别表示出四位“美数”和两位“美数”,再将四位“美数”减去任意一个两位“美数””之差再加上1的结果除以11判断结果是否为整数即可;(3)根据题意两个数之和为55得出二元一次方程,化简方程,再根据x与y的取值范围,即可求出最大值.【详解】(1)设其个位数为x,则解得:x=6则这个“美数”为:(2)设四位“美数”的个位为x、两位“美数””的个位为y,根据题意得:==即:式子结果是11的倍数(3)根据题意:,由10x+y可得x越大越大,即y为最小值时的值最大则x=4,y=2时的值最大的最大值为本题主要考查二元一次方程的应用,解题关键是设个位数的数为x得出方程并解答.18、(2)40;(2)当0≤t≤2时,d2=﹣60t+60;当2<t≤3时,d2=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】
(2)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的2.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(2)乙的速度v2=220÷3=40(米/分),(2)v2=2.5v2=2.5×40=60(米/分),60÷60=2(分钟),a=2,d2=;(3)d2=40t,当0≤t<2时,d2-d2>20,即-60t+60+40t>20,解得0≤t<2.5,∵0≤t<2,∴当0≤t<2时,两遥控车的信号不会产生相互干扰;当2≤t≤3时,d2-d2>20,即40t-(60t-60)>20,当2≤t<时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.一、填空题(本大题共5个小题,每小题4分,共20分)19、x≥2【解析】
根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.【详解】解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.20、①③④【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.21、<【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,所以S甲2<S乙2故选<本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.22、1【解析】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.解答:解:原式==1.点评:本题考查了分式的加减运算.最后要注意将结果化为最简分式.23、1【解析】∵x>5∴x相当于已知调和数1,代入得,13二、解答题(本大题共3个小题,共30分)24、(1)今年5月份A款汽车每辆售价9万元;(2)共有3种进货方案:A款汽车8辆,B款汽车7辆;A款汽车9辆,B款汽车6辆;A款汽车10辆,B款汽车5辆;(3)当=0.5时,(2)中所有方案获利相同.【解析】
(1)求单价,总价明显,应根据数量来列等量关系,等量关系为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023装修合同协议书七篇
- 2024年净水设备耗材供应及更换服务合同
- 2024年度区块链技术研发合同
- 2024年全新合作伙伴权益合同样本版
- 2024年企业网络安全防护合同
- 2024剧本委托创作合同模板
- 2024年度保全合同标的及其属性
- 2024年办公场所租赁安全保证合同版B版
- 2024年医院护理员工作合同范本一
- 2024年企业咨询服务框架合同(战略发展专案)
- 轻度损伤的自我处理课件讲义
- 低压电工作业(复审)模拟考试题及答案
- 通信工程投标专家继续教育题库(附答案)
- 直播带货-直播控场-带货直播间如何控场
- 【幼儿区域活动环境创设中存在的问题及其对策开题报告文献综述(含提纲)3000字】
- 血小板血浆(PRP)课件
- C++程序设计智慧树知到答案章节测试2023年咸阳师范学院
- 口腔颌面外科学 功能性外科
- 加油站全年12月消防灭火疏散应急演练
- 人类未来的进化模式探析,人类学论文
- 旋挖桩基遇到流沙层
评论
0/150
提交评论