版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年河南省驻马店市平舆县数学九年级第一学期开学学业质量监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)为打击毒品犯罪,我县缉毒警察乘警车,对同时从县城乘汽车出发到A地的两名毒犯实行抓捕,警车比汽车提前15分钟到A地,A地距离县城8千米,警车的平均速度是汽车平均速度的2.5倍,若设汽车的平均速度是每小时x千米,根据题意可列方程为()A.+15= B.=+15C.= D.=2、(4分)若一次函数的图象经过两点和,则下列说法正确的是()A. B. C. D.3、(4分)正方形具有而菱形不具有的性质是()A.对角线平分一组对角 B.对角互补C.四边相等 D.对边平行4、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是()L.A.5 B.3.75 C.4 D.2.55、(4分)下列结论中,正确的是()A.四边相等的四边形是正方形B.对角线相等的菱形是正方形C.正方形两条对角线相等,但不互相垂直平分D.矩形、菱形、正方形都具有“对角线相等”的性质6、(4分)下列函数中y是x的一次函数的是()A.y=1x B.y=3x+1 C.y=7、(4分)如图,过矩形的四个顶点作对角线、的平行线,分别相交于、、、四点,则四边形为()A.平行四边形 B.矩形 C.菱形 D.正方形8、(4分)不等式的解集在数轴上表示正确的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知函数,则x取值范围是_____.10、(4分)已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是______.11、(4分)如图,在直角坐标系中,、两点的坐标分别为和,将一根新皮筋两端固定在、两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形,若反比例函数的图像恰好经过点,则的值______.12、(4分)如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.13、(4分)关于x的方程a2x+x=1的解是__.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.15、(8分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.16、(8分)如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、DQ、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.17、(10分)当今,青少年用电脑手机过多,视力水平下降已引起了全社会的关注,某校为了解八年级1000名学生的视力情况,从中抽查了150名学生的视力情况,通过数据处理,得到如下的频数分布表.解答下列问题:视力范围分组组中值频数3.95≤x<4.254.1204.25≤x<4.554.4104.55≤x<4.854.7304.85≤x<5.155.0605.15≤x<5.455.330合计150(1)分别指出参加抽测学生的视力的众数、中位数所在的范围;(2)若视力为4.85以上(含4.85)为正常,试估计该校八年级学生视力正常的人数约为多少?(3)根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数相应组中的权.请你估计该校八年级学生的平均视力是多少?18、(10分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在代数式,,,,中,是分式的有______个.20、(4分)在函数的图象上有两个点,,则的大小关系是___________.21、(4分)如果点A(1,m)在直线y=-2x+1上,那么m=___________.22、(4分)直线沿轴平行的方向向下平移个单位,所得直线的函数解析式是_________23、(4分)分解因式:=___________________.二、解答题(本大题共3个小题,共30分)24、(8分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.25、(10分)如图在△ABC中,AD是BC边上的高,CE是AB边上的中线,且∠B=2∠BCE,求证:DC=BE.26、(12分)如图,四边形为正方形.在边上取一点,连接,使.(1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则;(2)在前面的条件下,取中点,过点的直线分别交边、于点、.①当时,求证:;②当时,延长,交于点,猜想与的数量关系,并说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,根据时间=路程÷速度结合警车比汽车提前小时(15分钟)到A地,即可得出关于x的分式方程,此题得解.【详解】设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,依题意,得:=+.故选D.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.2、A【解析】
根据一次函数的增减性求解即可.【详解】∵2>0,∴y随x的增大而增大,∵-1<2,∴.故选A.本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3、B【解析】
要熟练掌握菱形对角线相互垂直平分与正方形对角线相互垂直平分相等的性质,根据各自性质进行比较即可解答.【详解】A.正方形和菱形的对角线都可以平分一组对角,故本选项错误B.只有正方形的对角互补,故本项正确C.正方形和菱形的四边都相等,故本项错误D.正方形和菱形的对边都平行,故本项错误故选B本题考查正方形和菱形的性质,熟练掌握其性质是解题关键.4、B【解析】
观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.【详解】每分钟的进水量为:20÷4=5(升),每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).故选B.本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.5、B【解析】A.可判断为菱形,故本选项错误,B.对角线相等的菱形是正方形,故本选项正确,C.正方形的两条对角线相等,且互相垂直平分,故本选项错误,D.菱形的对角线不一定相等,故本选项错误,故选B.6、B【解析】
利用一次函数的定义即能找到答案.【详解】选项A:含有分式,故选项A错误;选项B:满足一次函数的概念,故选项B正确.选项C:含有分式,故选项C错误.选项D:含有二次项,故选项D错误.故答案为:B.此题考查一次函数的定义,解题关键在于掌握其定义.7、C【解析】
由题意易得四边形EFGH是平行四边形,又因为矩形的对角线相等,可得EH=HG,所以平行四边形EFGH是菱形.【详解】∵HG∥EF∥AC,EH∥FG∥BD,HG=EF=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∵矩形的对角线相等,∴AC=BD,∴EH=HG,∴平行四边形EFGH是菱形.故选C.本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.熟练掌握矩形、菱形的性质是解题关键.8、A【解析】
先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,,合并同类项得,,的系数化为1得,,在数轴上表示为:.故选:.本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、x≥1.【解析】试题解析:根据题意得,x-1≥0,解得x≥1.考点:函数自变量的取值范围.10、【解析】
设方程为ax2+bx+c=0,则由已知得出a=1,根据根与系数的关系得,2+3=−b,2×3=c,求出即可.【详解】∵二次项系数为1的一元二次方程的两个根为2,3,∴2+3=−b,2×3=c,∴b=-5,c=6∴方程为,故答案为:.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.11、48【解析】
先根据已知条件得到OA=8,OB=6,由勾股定理得到根据矩形的性质即可得到结论.【详解】解:∵A、B两点的坐标分别为(0,8)和(6,0),
∴OA=8,OB=6,∵四边形AOBC是矩形,
∴AC=OB=6,OA=BC=8,
∴C(6,8),
反比例函数的图像恰好经过点,∴k=6,本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.12、56°【解析】
根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.13、.【解析】
方程合并后,将x系数化为1,即可求出解.【详解】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:.三、解答题(本大题共5个小题,共48分)14、(I)点的坐标为;(II)四边形是平行四边形,理由见解析;(III)的最小值是.【解析】
(I)由,,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III)设与的距离为,由,,梯形的面积为,可求出h=7,根据,,可得,进而得出答案.【详解】(I)∵,,∴,,设点的坐标为,则点的坐标为,由得:,解得:,∴此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,∵点、关于原点对称,∴点的坐标为,∵∥∥轴,且点、在双曲线上,,∴点,点,∴点B与点D关于原点O对称,即,且、、三点共线.又点、C关于原点O对称,即,且、、三点共线.∴与互相平分.∴四边形是平行四边形.(III)设与的距离为,,,梯形的面积为,∴,即,解得:,设点的坐标为,则点,,,由,,可得:,则,,∴,解得:,∴,∵.∴.∴,即.又,,∴当取到等号.即,时,的最小值是.本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.15、(1);(2)证明见解析.【解析】
(1)根据角平分线上的点到两边的距离相等可得DE=CD=1cm,再判断出△BDE为等腰直角三角形,然后求出BD,再根据AC=BC=CD+BD求解即可;(2)利用“HL”证明△ACD与△AED全等,根据全等三角形对应边相等可得AC=AE,再根据AB=AE+BE整理即可得证.【详解】(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=1cm,又∵AC=BC,∠C=90°,∴∠B=∠BAC=45°,∴△BDE为等腰直角三角形.∴BD=DE=cm,∴AC=BC=CD+BD=(1+)cm.(2)证明:在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵△BDE为等腰直角三角形,∴BE=DE=CD,∵AB=AE+BE,∴AB=AC+CD.本题考查了角平分线的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质.熟记各性质是解题的关键.16、(1),;(3)①理由详见解析;②;(3)3﹣或或3+.【解析】试题分析:(1)根据两点之间,线段最短可知,点Q在线段BD上时BQ+DQ的值最小,是BD的长度,利用勾股定理即可求出;再根据△PDQ是等腰直角三角形求出x的值;(3)①由对称可知AB=BQ=BC,因此∠BCQ=∠BQC.根据∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,从而EQ=EC.再根据∠CQD=90°可得∠DQE+∠CQE=90°,∠QCE+∠QDE=90°,而∠EQC=∠ECQ,所以∠QDE=∠DQE,从而EQ=ED.易得点E是CD的中点;②在Rt△PDE中,PE=PQ+QE=x+,PD=1﹣x,PQ=x,根据勾股定理即可求出x的值.(3)△CDQ为等腰三角形分两种情况:①CD为腰,以点C为圆心,以CD的长为半径画弧,两弧交点即为使得△CDQ为等腰三角形的Q点;②CD为底边时,作CD的垂直平分线,与的交点即为△CDQ为等腰三角形的Q点,则共有3个Q点,那么也共有3个P点,作辅助线,利用直角三角形的性质求之即得.试题解析:(1),.(3)①证明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°.∵Q点为A点关于BP的对称点,∴AB=QB,∠A=∠PQB=90°,∴QB=BC,∠BQE=∠BCE,∴∠BQC=∠BCQ,∴∠EQC=∠EQB﹣∠CQB=∠ECB﹣∠QCB=∠ECQ,∴EQ=EC.在Rt△QDC中,∵∠QDE=90°﹣∠QCE,∠DQE=90°﹣∠EQC,∴∠QDE=∠DQE,∴EQ=ED,∴CE=EQ=ED,即E为CD的中点.②∵AP=x,AD=1,∴PD=1﹣x,PQ=x,CD=1.在Rt△DQC中,∵E为CD的中点,∴DE=QE=CE=,∴PE=PQ+QE=x+,∴,解得x=.(3)△CDQ为等腰三角形时x的值为3-,,3+.如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于Q1,Q3.此时△CDQ1,△CDQ3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点Q3,此时△CDQ3以CD为底的等腰三形.以下对此Q1,Q3,Q3.分别讨论各自的P点,并求AP的值.讨论Q₁:如图作辅助线,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD于E,交BC于F.∵△BCQ1为等边三角形,正方形ABCD边长为1,∴,.在四边形ABPQ1中,∵∠ABQ1=30°,∴∠APQ1=150°,∴△PEQ1为含30°的直角三角形,∴PE=.∵AE=,∴x=AP=AE-PE=3-.②讨论Q3,如图作辅助线,连接BQ3,AQ3,过点Q3作PG⊥BQ3,交AD于P,连接BP,过点Q3作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AQ3=BQ3.∵AB=BQ3,∴△ABQ3为等边三角形.在四边形ABQP中,∵∠BAD=∠BQP=90°,∠ABQ₂=60°,∴∠APE=130°∴∠EQ3G=∠DPG=180°-130°=60°,∴,∴EG=,∴DG=DE+GE=-1,∴PD=1-,∴x=AP=1-PD=.③对Q3,如图作辅助线,连接BQ1,CQ1,BQ3,CQ3,过点Q3作BQ3⊥PQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,不妨记Q3与F重合.∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=1,∴,,∴.在四边形ABQ3P中∵∠ABF=∠ABC+∠CBQ3=150°,∴∠EPF=30°,∴EP=,EF=.∵AE=,∴x=AP=AE+PE=+3.综上所述,△CDQ为等腰三角形时x的值为3﹣,,3+.考点:⒈四边形综合题;⒉正方形的性质;⒊等腰三角形的性质.17、(1)众数在4.85≤x<5.15的范围内,中位数在4.85≤x<5.15的范围内;(2)八年级视力正常的学生约有600人;(3)八年级1000名学生平均视力为4.1.【解析】
(1)根据众数和中位数的定义,就是出现次数最多的数和中间的数(中间两数的平均数),据此即可判断;(2)利用总人数1000乘以对应的比例即可求解;(3)根据用样本估计总体解答即可.【详解】(1)众数在4.85≤x<5.15的范围内,中位数在4.85≤x<5.15的范围内;(2)依题意,八年级视力正常的学生约有人;(3)依题意,抽样调查150名学生的平均视力为,由于可以用样本估计总体,因此得到八年级1000名学生平均视力为4.1.本题考查读频数分布表的能力和利用统计图表获取信息的能力;利用统计图表获取信息时,必须认真观察、分析、研究统计图表,才能作出正确的判断和解决问题.18、(1)证明见解析;(2)14.【解析】试题分析:(1)先证明四边形CODE是平行四边形,再利用菱形的性质得到直角,证明四边形CODE是矩形.(2)由勾股定理可知OD长,OC是AC一半,所以可知矩形的周长.试题解析:(1)∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴□CODE是矩形;(2)在菱形ABCD中,OC=AC=×6=3,CD=AB=5,在Rt△COD中,OD=,∴四边形CODE的周长即矩形CODE的周长为:2(OD+OC)=2×(4+3)=14.一、填空题(本大题共5个小题,每小题4分,共20分)19、2【解析】
根据题中“是分式的有”可知,本题考查分式的判断,根据分式的基本概念,运用分式是形如分数的形式,但分母含有字母的方法,进行分析判断.【详解】解:由形如分数的形式,但分母含有字母是分式,判断出,为分式,其它为整式.故是分式的有2个.本题解题关键:理解分式的基本概念,特别注意是分式的分母含有字母.20、y1>y2【解析】分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.详解:∵k=-5<0∴y随x增大而减小,∵-2<5∴>.故答案为:>.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.21、-1.【解析】
将x=1代入m=-2x+1可求出m值,此题得解.【详解】解:当x=1时,m=-2×1+1=-1.故答案为:-1.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.22、;【解析】
根据函数的性质,一次项的系数决定直线的走向,常数项决定在y轴的交点,因此向下3个单位,就对常数项进行变化,一次项系数不变.【详解】根据一次函数的性质,上下平移只对常数项进行分析,向下平移对常数项减去相应的数,向上平移对常数项加上相应的数,因此可得,即故答案为本题主要考查一次函数的性质,关键要理解一次函数的一次项系数和常数项所代表的意义.23、【解析】
先提取公因式2x后,再用平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业长期汽车租赁协议精简版版B版
- 2024个人向公司借款协议合同范本
- 2024年专项供货协议模板指导版B版
- 2024年工厂零星装修施工及维护协议一
- 2024年国际专家服务协议标准范本一
- 2024信息安全保密协议信息保密协议书
- 2024年国际原油贸易长期购销合同
- 2024年商铺租赁简明协议范例版
- 2024年度企业形象宣传片摄制合同
- 2024年二手房代理销售授权合同样本版B版
- 血小板血浆(PRP)课件
- C++程序设计智慧树知到答案章节测试2023年咸阳师范学院
- 口腔颌面外科学 功能性外科
- 人类未来的进化模式探析,人类学论文
- 旋挖桩基遇到流沙层
- 中考复习统计与概率课件
- 三角形的面积计算
- Unit 3 Developing ideas Emojis- a new language-课件-高中英语外研版(2019)选择性必修第二册
- 高标准农田建设监理评估报告
- 某公司战略发展部职能设计
- 培训机构聘用合同(3篇)
评论
0/150
提交评论