2024-2025学年河南省师范大附属中学数学九年级第一学期开学综合测试模拟试题【含答案】_第1页
2024-2025学年河南省师范大附属中学数学九年级第一学期开学综合测试模拟试题【含答案】_第2页
2024-2025学年河南省师范大附属中学数学九年级第一学期开学综合测试模拟试题【含答案】_第3页
2024-2025学年河南省师范大附属中学数学九年级第一学期开学综合测试模拟试题【含答案】_第4页
2024-2025学年河南省师范大附属中学数学九年级第一学期开学综合测试模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年河南省师范大附属中学数学九年级第一学期开学综合测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序().①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A.①②④③B.③④②①C.①④②③D.③②④①2、(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=3EQ;④△PBF是等边三角形,其中正确的是()A.①②③ B.②③④ C.①②④ D.①③④3、(4分)已知不等式ax+b>0的解集是x<-2,则函数y=ax+b的图象可能是()A. B.C. D.4、(4分)的值等于()A. B. C. D.5、(4分)要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<6、(4分)已知二次函数的与的部分对应值如下表:

-1

0

1

3

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有()A.1个 B.2个 C.3个 D.1个7、(4分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.68、(4分)如图,在中,,的垂直平分线交于点,交于点,连接,,,,添加一个条件,无法判定四边形为正方形的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)直线l与直线y=3﹣2x平行,且在y轴上的截距是﹣5,那么直线l的表达式是_____.10、(4分)当x=时,二次根式的值为_____.11、(4分)图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.12、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.13、(4分)已知y=1++,则2x+3y的平方根为______.三、解答题(本大题共5个小题,共48分)14、(12分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.图1图215、(8分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.16、(8分)解方程:(1).(2).17、(10分)先化简,再求值:,其中18、(10分)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形;为什么.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在方程组中,已知,,则a的取值范围是______.20、(4分)若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.21、(4分)关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标是_____.22、(4分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.23、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=2,求D、F两点间的距离.25、(10分)写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).26、(12分)已知x=2+,求代数式(7-4)x2+(2-)x+的值.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】本题考查的是变量关系图象的识别,借助生活经验,弄明白一个量是如何随另一个量的变化而变化是解决问题的关键.①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系),路程是时间的正比例函数,对应第四个图象;②向锥形瓶中匀速注水(水面的高度与注水时间的关系),高度是注水时间的函数,由于锥形瓶中的直径是下大上小,故先慢后快,对应第二个函数的图象;③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系),温度计的读数随时间的增大而增大,由于温度计的温度在放入热水前有个温度,故对应第一个图象;④一杯越来越凉的水(水温与时间的关系),水温随时间的增大而减小,由于水冷却到室温后不变化,故对应第三个图象;综合以上,得到四个图象对应的情形的排序为③②④①.2、D【解析】

求出BE=2AE,根据翻折的性质可得PE=BE,由此得出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③正确;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,故④正确.【详解】∵AE=AB,∴BE=2AE,由翻折的性质得:PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③正确;由翻折的性质,∠EFB=∠EFP=30°,则∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确.故选D.本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定等知识,熟记各性质并准确识图是解题的关键.3、A【解析】

根据一次函数与一元一次不等式的关系,得到当x<-2时,直线y=ax+b的图象在x轴上方,然后对各选项分别进行判断.【详解】解:∵不等式ax+b>0的解集是x<-2,∴当x<-2时,函数y=ax+b的函数值为正数,即直线y=ax+b的图象在x轴上方.故选:A.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.4、A【解析】分析:根据平方与开平方互为逆运算,可得答案.详解:=,故选A.点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.5、B【解析】

二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6、B【解析】

解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=,故②错误;当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×=3,小于3+1=1,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质7、B【解析】

试题解析:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵AB۰AC=BC۰AP,即AP==4.8,∴线段EF长的最小值为4.8;故选B.考点:1.勾股定理、矩形的判定与性质、垂线段最短.8、D【解析】

根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【详解】解:∵EF垂直平分BC,

∴BE=EC,BF=CF,

∵BF=BE,

∴BE=EC=CF=BF,

∴四边形BECF是菱形;

当BC=AC时,

∵∠ACB=90°,

则∠A=45°时,菱形BECF是正方形.

∵∠A=45°,∠ACB=90°,

∴∠EBC=45°

∴∠EBF=2∠EBC=2×45°=90°

∴菱形BECF是正方形.

故选项A正确,但不符合题意;

当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;

当BD=DF时,BC=EF,对角线相等的菱形是正方形,得菱形BECF是正方形,故选项C正确,但不符合题意;

当AC=BF时,AC=BF=CE,∠A=∠CEA=∠FBA,由菱形的对角线平分对角和直角三角形的两锐角互余得:∠ABC=30°,即∠FBE=60°,所以无法得出菱形BECF是正方形,故选项D错误,符合题意.

故选D.本题考查菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的判定是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、y=﹣2x﹣1【解析】

因为平行,所以得到两个函数的k值相同,再根据截距是-1,可得b=-1,即可求解.【详解】∵直线l与直线y=3﹣2x平行,∴设直线l的解析式为:y=﹣2x+b,∵在y轴上的截距是﹣1,∴b=﹣1,∴y=﹣2x﹣1,∴直线l的表达式为:y=﹣2x﹣1.故答案为:y=﹣2x﹣1.该题主要考查了一次函数图像平移的问题,10、【解析】

把x=代入求解即可【详解】把x=代入中,得,故答案为熟练掌握二次根式的化简是解决本题的关键,难度较小11、【解析】

过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.【详解】解:过作,正方形,,,,,,且,,,,,当时,的最小值为故答案为:本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.12、甲【解析】

首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为甲.此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13、±2【解析】

先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.【详解】解:由题意得,,,,,的平方根为.故答案为.本题考查二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键三、解答题(本大题共5个小题,共48分)14、(1)MA=MN,MA⊥MN;(2)成立,理由详见解析【解析】

(1)解:连接DE,∵四边形ABCD是正方形,∴AD=CD=AB=BC,∠DAB=∠DCE=90°,∵点M是DF的中点,∴AM=DF.∵△BEF是等腰直角三角形,∴AF=CE,在△ADF与△CDE中,,∴△ADF≌△CDE(SAS),∴DE=DF.∵点M,N分别为DF,EF的中点,∴MN是△EFD的中位线,∴MN=DE,∴AM=MN;∵MN是△EFD的中位线,∴MN∥DE,∴∠FMN=∠FDE.∵AM=MD,∴∠MAD=∠ADM,∵∠AMF是△ADM的外角,∴∠AMF=2∠ADM.∵△ADF≌△CDE,∴∠ADM=∠CDE,∴∠ADM+∠CDE+∠FDE=∠FMN+∠AMF=90°,∴MA⊥MN.∴MA=MN,MA⊥MN.(2)成立.理由:连接DE.∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠1.∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE.∵△BEF是等腰直角三角形,∴BF=BF,∠EBF=90°.∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE.在△ADF与△CDE中,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,∴MA=MN,∠2=∠1.∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠1+∠5=90°,∴∠6=180°﹣(∠1+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.考点:四边形综合题15、(1)四边形AECF为平行四边形;(2)见解析【解析】试题分析:(1)四边形AECF为平行四边形.通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形.(2)根据直角△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.16、(1),;(2),【解析】

(1)先移项,然后用因式分解法求解即可;(2)用求根公式法求解即可.【详解】解:(1),,,.(2),,,,,因此原方程的根为,.本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.17、,【解析】

根据分式的混合运算法则把原式化简,把x的值代入计算即可【详解】解:原式当时,原式本题考查整式的混合运算-化简求值,解题的关键是明确整式的混合运算的计算方法.18、(1)证明见解析;(2)当AB=BC时,四边形DBEF是菱形,理由见解析.【解析】

(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明.(2)根据邻边相等的平行四边形是菱形证明.【详解】解:(1)∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线.∴DE∥BC.又∵EF∥AB,∴四边形DBFE是平行四边形.(2)当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=12∵DE是△ABC的中位线,∴DE=12∵AB=BC,∴BD=DE.又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

先根据加减消元法解二元一次方程组,解得,再根据,,可列不等式组,解不等式组即可求解.【详解】方程组,由①+②,可得:,解得,把代入①可得:,因为,,所以,所以不等式组的解集是,故答案为:.本题主要考查解含参数的二元一次方程组和一元一次不等式组,解决本题的关键是要熟练掌握解含参数的二元一次方程的解法.20、1【解析】分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.故答案为1.点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.21、(m,0).【解析】分析:关于x的一元一次方程ax+b=0的根是x=m,即x=m时,函数值为0,所以直线过点(m,0),于是得到一次函数y=ax+b的图象与x轴交点的坐标.详解:关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标为(m,0).故答案为:(m,0).点睛:本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.22、30°【解析】

解:∵四边形ABCD是矩形,

∴∠B=90°,

∵E为边AB的中点,

∴AE=BE,

由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,

∴AE=FE,

∴∠EFA=∠EAF=75°,

∴∠BEF=∠EAF+∠EFA=150°,

∴∠CEB=∠FEC=75°,

∴∠FCE=∠BCE=90°-75°=15°,

∴∠BCF=30°,

故答案为30°.本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.23、4【解析】

首先由对边分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论