版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2024-2025学年河南省濮阳市油田实验学校数学九上开学监测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在平面直角坐标系中,把直线y=3x向左平移2个单位长度,平移后的直线解析式是()A.y=3x+2 B.y=3x﹣2 C.y=3x+6 D.y=3x﹣62、(4分)下列计算正确的是()A. B. C. D.﹣3、(4分)电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为()A. B. C. D.4、(4分)如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是()A.x<0 B.x<1 C.0<x<1 D.x>15、(4分)下列二次根式中,与不是同类二次根式的是()A. B. C. D.6、(4分)如图,下面不能判定四边形ABCD是平行四边形的是()A.B.C.D.7、(4分)已知,是一次函数的图象上的两个点,则m,n的大小关系是A. B. C. D.不能确定8、(4分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形 B.八边形 C.九边形 D.十边形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若点A(﹣2,4)在反比例函数的图像上,则k的值是____.10、(4分)多项式分解因式的结果是______.11、(4分)将正比例函数y=-x的图象向上平移,则平移后所得图象对应的函数解析式可能是______________(答案不唯一,任意写出一个即可).12、(4分)已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.13、(4分)在函数的图象上有两个点,,则的大小关系是___________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.15、(8分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查发现:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件,设每件涨价x元(x为非负整数),每星期的销量为y件.(1)写出y与x的关系式;(2)要使每星期的利润为1560元,从有利于消费者的角度出发,售价应定为多少?16、(8分)如图,AB=12cm,AC⊥AB,BD⊥AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.17、(10分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t为多少时,四边形PQCD成为平行四边形?(3)当t为多少时,四边形PQCD为等腰梯形?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.18、(10分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.20、(4分)如图,直线y=kx+3经过点A(1,2),则它与x轴的交点B的坐标为____.21、(4分)如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为______.22、(4分)在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.23、(4分)如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.二、解答题(本大题共3个小题,共30分)24、(8分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为km/t,t=h
;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.25、(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.26、(12分)如图,正方形中,经顺时针旋转后与重合.(1)旋转中心是点,旋转了度;(2)如果,,求的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,把直线y=3x向左平移2个单位长度所得的直线的解析式是y=3(x+2)=3x+1.即y=3x+1,故选:C.本题考查的是一次函数的图象与几何变换,熟知“左加右减”的原则是解答此题的关键.2、C【解析】
根据二次根式的运算法则即可求出答案.【详解】解:(A)原式=2﹣=,故A错误;(B)原式=2,故B错误;(D)原式=﹣,故D错误;故选C.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3、D【解析】
乘以分母的有理化因式即可完成化简.【详解】解:.故选D.本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.4、B【解析】
根据两直线的交点坐标和函数的图象即可求出答案.【详解】解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),∴不等式mx<kx+2的解集是x<1,故选:B.本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.5、B【解析】
根据最简二次根式的定义选择即可.【详解】A、与是同类二次根式,故A不正确;B、与不是同类二次根式,故B正确;C、是同类二次根式,故C不正确;D、是同类二次根式,故D不正确;故选:B.本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.6、C【解析】
根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7、A【解析】
根据一次函数中k的值确定函数的增减性,然后比较m、n的大小即可.【详解】解:∵一次函数y=2x-1中的k=2>0,∴y随x的增大而增大,∵图象经过A(-3,m),B(2,n)两点,且-3<2,∴m<n,故选A.本题考查了一次函数的性质,熟练掌握一次函数的性质是解决此类问题的关键.一次函数y=kx+b(k≠0),当k>0时,y随着x的增大而增大,当k<0时,y随着x的增大而减小.8、C【解析】
根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】360÷40=9,即这个多边形的边数是9,故选C.本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.二、填空题(本大题共5个小题,每小题4分,共20分)9、-8【解析】
把点A(﹣2,4)代入反比例函数即可求解.【详解】把点A(﹣2,4)代入反比例函数得k=-2×4=-8.故答案为-8此题主要考查反比例函数的求解,解题的关键是熟知待定系数法确定函数关系式.10、【解析】
先提出公因式a,再利用平方差公式因式分解.【详解】解:a3-4a=a(a2-4)=a(a+2)(a-2).
故答案为a(a+2)(a-2).本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.11、y=-x+1【解析】
根据平面坐标系中函数图像的平移规律“左加右减,上加下减”可知,当平移1个单位时,平移后的函数解析式为y=-x+1.【详解】由题意得:y=-x的图像向上平移,得到y=-x+1,故本题答案是y=-x+1.本题主要考查图形的平移和一次函数的图像性质,学生掌握即可.12、【解析】
首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.【详解】解:共有10个数据,其中6~7的频率是1÷10=0.1;
8~9的频率是6÷10=0.3;
10~11的频率是8÷10=0.4;
11~13的频率是4÷10=0.1.
故答案为.本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.13、y1>y2【解析】分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.详解:∵k=-5<0∴y随x增大而减小,∵-2<5∴>.故答案为:>.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.三、解答题(本大题共5个小题,共48分)14、(1)见解析(2)当或AB=2AC时,四边形DCBE是平行四边形.【解析】
(1)首先连接CE,根据直角三角形的性质可得CE=AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB.(2)当或AB=2AC时,四边形DCBE是平行四边形.若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°进而得到∠B=30°,再根据三角函数可推出答案.【详解】解:(1)证明:连结CE,∵点E为Rt△ACB的斜边AB的中点,∴CE=AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS)∴∠ADE=∠CDE=30°∵∠DCB=150°∴∠EDC+∠DCB=180°∴DE∥CB(2)∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∴∠B=30°.在Rt△ACB中,sinB=,即sin30°=∴或AB=2AC.∴当或AB=2AC时,四边形DCBE是平行四边形.此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.15、(1)y=150-10x(0≤x≤5且x为整数);(2)售价应定为42元.【解析】
(1)根据每周销量=150-10×每件涨价钱数,即可得出y与x的关系式;(2)根据每周的总利润=每件商品的利润×每周的销量,可得关于x的一元二次方程,解之即得x的值,取其较小者代入40+x即可得出结论.【详解】解:(1)由题意,得y=150-10x(0≤x≤5且x为整数);(2)设每星期的利润为w元,则w=(40+x-30)y=(x+10)(150-10x)=-10x2+50x+1500,要使每星期的利润为1560元,则w=1560,即-10x2+50x+1500=1560.解这个方程得:x1=2,x2=3.∴当x=2或3时,可使每星期的利润为1560元,从有利于消费者的角度出发,应取x=2,此时40+x=42,即售价应定为42元.本题是一元二次方程的应用问题中较为典型的类型,解题的思路一般是先表示出销量,再表示出总利润,最后得出方程.需要注意的是,在列方程时,要认真审题,加强分析,注意题意中的“一涨一少”,明确涨的是什么,少的是什么.16、(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或(3)9s【解析】
(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为VQ<VP,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP与△BPQ中,,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC与线段PQ垂直.(2)设点Q的运动速度x,①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得,②若△ACP≌△BPQ,则AC=BQ,AP=BP,解得,综上所述,存在或使得△ACP与△BPQ全等.(3)因为VQ<VP,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,设经过x秒后P与Q第一次相遇,∵AC=BD=9cm,C,D分别是AE,BD的中点;∴EB=EA=18cm.当VQ=1时,依题意得3x=x+2×9,解得x=9;当VQ=时,依题意得3x=x+2×9,解得x=12.故经过9秒或12秒时P与Q第一次相遇.本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.17、(1)18cm(2)当t=125秒时四边形PQCD为平行四边形(3)当t=245时,四边形PQCD为等腰梯形(4)存在t,t的值为103【解析】试题分析:(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;(2)由于PD∥QC,所以当PD=QC时,四边形PQCD为平行四边形,根据PD=QC列出关于t的方程,解方程即可;(3)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12时,四边形PQCD为等腰梯形,解此方程即可求得答案;(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.试题解析:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=DC∴BC=BE+EC=18cm.(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125故当t=125(3)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ=CDPF=DE∴Rt△PQF≌Rt△CDE(HL),∴QF=CE,∴QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12,解得:t=245即当t=245(4)△DQC是等腰三角形时,分三种情况讨论:①当QC=DC时,即3t=10,∴t=103②当DQ=DC时,3t∴t=4;③当QD=QC时,3t×6∴t=259故存在t,使得△DQC是等腰三角形,此时t的值为103秒或4秒或25考点:四边形综合题.18、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.【解析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.【详解】(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120−x)(100+2x)=14000,整理得x2−70x+1000=0,解得x1=20,x2=50;∵为了多销售,增加利润,∴x=50答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,整理得x2−70x+1500=0,∵△=702−4×1500<0∴方程无解,∴获利不能达到15000元.考核知识点:一元二次方程的应用.理解题意,列出方程是关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、45【解析】
由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.【详解】解:如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=1:3,
∴∠C=3∠B,
∴∠B+4∠B=180°,
解得:∠B=45°,
故答案为:45°.本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.20、(3,0)【解析】
把点代入直线解析式,求出直线的表达式子,再根据点是直线与轴的交点,把代入直线表达式即可求解.【详解】解:把A(1,2)代入可得:解得:∴∴把代入可得:解得:∴B(3,0)故答案为(3,0)本题主要考查了一次函数与坐标轴交点问题,通过一次函数所经过的点求一次函数的解析式是解题的关键.21、.【解析】
解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,∵A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,∵菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB·CE′=8,∴CE′=2,由此求出CE的长=2.故答案为2.考点:1、轴对称﹣最短问题,2、菱形的性质22、AB//CD等【解析】
根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.23、9.【解析】
作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF=,即可得出结论.【详解】解:作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
∴DE=DF,
又∵DE⊥AB于点E,DF⊥AC于点F,
∴∠AED=∠AFD=90°,
又∵AD=AD,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF;∵∠MDN+∠BAC=180°,
∴∠AMD+∠AND=180°,
又∵∠DNF+∠AND=180°
∴∠EMD=∠FND,
又∵∠DEM=∠DFN,DE=DF,
∴△DEM≌△DFN,
∴S△DEM=S△DFN,
∴S四边形AMDN=S四边形AEDF,
∵,AD平分∠BAC,
∴∠DAF=30°,∴Rt△ADF中,DF=3,AF==3,
∴S△ADF=AF×DF=×3×3=,
∴S四边形AMDN=S四边形AEDF=2×S△ADF=9.故答案为9.本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.二、解答题(本大题共3个小题,共30分)24、(1)120;;(2)y=-120x+300;(3)100km.【解析】
(1)根据图象可得当x=小时时,据甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;(2)利用待定系数法即可求解;(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.【详解】解:(1)轿车从甲地到乙地的速度是:=80(千米/小时),则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),则t=+=(小时).故答案是:120,;(2)设轿车从乙地返回甲地的函数关系式为:y=kx+b.将(,120)和(,0),两点坐标代入,得,解得:,所以轿车从乙地返回甲地时y与x之间的函数关系式为:y=-120x+300;(3)设货车从甲地驶往乙地的函数关系式为:y=ax将点(2,120)代入解得,解得a=60,故货车从甲地驶往乙地时y与x之间的函数关系式为:y=60x.由图象可知当轿车从乙地返回甲地时,两车相遇,路程相等,即-120x+300=60x解得x=,当x=时,y=100.故相遇处到甲地的距离为100km本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,熟练掌握待定系数法和一次函数图像交点坐标与二元一次方程组的关系是关键.25、(1)y=200x+74000(10≤x≤30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 取用水领域信用评价指标及评分标准、云南省取用水领域信用评价评分表
- 南宁-PEP-24年小学6年级上册英语第6单元测验卷
- 2024年乘用车变速器齿轮项目资金筹措计划书代可行性研究报告
- 第24课《诗词曲五首-南乡子 登京口北固亭有怀》教学设计+2023-2024学年统编版语文九年级下册
- 2023年重有色金属矿产:锌矿资金筹措计划书
- 2024年饲料级磷酸氢钙项目资金需求报告
- 专项24-切线长定理及三角形的内切圆-重难点题型
- 教学心得体会15篇
- 舞蹈技巧课心得体会
- 结婚晚会主持词
- 高校实验室安全基础学习通超星期末考试答案章节答案2024年
- 德力西系列变频器说明书
- 后疫情时代探索家校共育新模式维护学生心理健康
- 小学美术11-身边的伙伴ppt课件
- 铁合金生产工艺
- 钢结构策划书(范本)
- 焦化厂生产工序及工艺流程图
- 汽车排放控制系统的检修
- (外研版)初中英语语法汇总[新版]
- 李燕璇植树问题卡通版5
- 《新能源》题库(试题及答案29个)
评论
0/150
提交评论