版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.3实际问题与一元一次方程第五章一元一次方程第2课时工程问题学习目标1.理解工程问题的背景,分清有关数量关系,能正确找出作为列方程依据的主要等量关系.2.进一步掌握用一元一次方程解决实际问题的基本过程.重点难点回顾复习解一元一次方程的一般步骤:去括号移项合并同类项系数化为1去分母问题导入一项工作甲单独做
a
天完成,乙单独做
b
天完成,那么甲每天的工作效率是
,乙每天的工作效率是
,两人合作3天完成的工作量是
,此时剩余的工作量是
.
例题详解
这两个工作量之和等于总工作量.例2
整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:在工程问题中:工作量=人均效率×人数×时间;工作总量=各部分工作量之和.如果设先安排x人做4h,你能列出方程吗?××=工作量之和等于总工作量1×=×解:设先安排x人做4h,根据题意得等量关系:
可列方程
解方程,得4x+8(x+2)=40,4x+8x+16=40,12x=24,
x=2.答:应先安排
2人做4h.前部分工作总量+后部分工作总量=总工作量1小结1.工程问题中的基本量:工作量、工作效率、工作时间.2.工程问题中的基本数量关系:
工作量=工作效率×工作时间;合作的效率=各单独做的效率和;总工作量=各部分工作量之和.小结
归纳用一元一次方程解决实际问题的基本过程:用一元一次方程解决实际问题的基本过程:审设列解验答审:审清题意,找出题中的数量关系,分清题中的已知量、未知量.设:设未知数,用未知数表示其他未知量.列:根据题中的相等关系,列出一元一次方程.解:解所列出的一元一次方程.验:检验所得的解是否符合题意.答:写出答案(包括单位).小结设未知数的常见方法1.一般情况下,题中问什么就设什么,即设直接未知数;2.特殊情况下,设直接未知数难以列出方程时,可设另一个相关的量为未知数,即设间接未知数;3.在某些问题中,为了便于列方程,可以设辅助未知数.注意1.设未知数时,如果有单位,要加上单位.2.列方程时,等号两边量的单位要一致.3.检验有两层含义:一是检验所得结果是不是方程的解;二是检验方程的解是否符合实际问题的意义.随堂练习1.加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?x12-x解:设乙需工作x天后甲再继续加工才可正好按期完成任务,则甲做了(12-x)天.依题意,得解得x=8.答:乙需工作8天后甲再继续加工才可正好按期完成任务.想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?8x解:设甲加工x天,两人如期完成任务,则在甲加入之前,乙先工作了(8-x)天.依题意,得解得x=4,则8-x=4.答:乙需加工4天后,甲加入合作加工才可正好按期完成任务.2.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?分析:把工作量看作单位“1”,则甲的工作效为,乙的工作效率为,根据工作效率×工作时间=工作量,列方程.
解方程,得x=8.答:要8天可以铺好这条管线.解:设要x
天可以铺好这条管线,由题意,得拓展提升1.为了保证机场按时通航,通往机场的高速公路需要及时翻修完工,已知甲队单独做需要10天完成,乙队单独做需要15天完成,若甲、乙两队合作5天后,再由乙队单独完成剩余的工作量,共需要多少天?
2.检查一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,则乙中途离开了几天?
归纳小结1.工程问题中的基本量:工作量、工作效率、工作时间.2.工程问题中的基本数量关系:
工作量=工作效率×工作时间;合作的效率=各单独做的效率和;总工作量=各部分工作量之和.3.用一元一次方程解决实际问题的基本过程如下:实际问题设未知数,列方程一元一次方程实际问题的答案解方程一元一次方程的解
(x=a)检验谢谢大家爱心.诚心.细心.耐心,让家长放心.孩子安心。样,也可能因讨厌一位老师而讨厌学习。一个被学生喜欢的老师,其教育效果总是超出一般教师。无论中学生还是小学生,他们对自己喜欢的老师都会有一些普遍认同的标准,诸如尊重和理解学生,宽容、不伤害学生自尊心,平等待人、说话办事公道、有耐心、不轻易发脾气等。教师要放下架子,把学生放在心上。“蹲下身子和学生说话,走下讲台给学生讲课”;关心学生情感体验,让学生感受到被关怀的温暖;自觉接受学生的评价,努力做学生喜欢的老师。教师要学会宽容,宽容学生的错误和过失,宽容学生一时没有取得很大的进步。苏霍姆林斯基说过:有时宽容引起的道德震动,比惩罚更强烈。每当想起叶圣陶先生的话:你这糊涂的先生,在你教鞭下有瓦特,在你的冷眼里有牛顿,在你的讥笑里有爱迪生。身为教师,就更加感受到自己职责的神圣和一言一行的重要。善待每一个学生,做学生喜欢的老师,师生双方才会有愉快的情感体验。一个教师,只有当他受到学生喜爱时,才能真正实现自己的最大价值。义务教育课程方案和课程标准(2022年版)简介新课标的全名叫做《义务教育课程方案和课程标准(2022年版)》,文件包括义务教育课程方案和16个课程标准(2022年版),不仅有语文数学等主要科目,连劳动、道德这些,也有非常详细的课程标准。现行义务教育课程标准,是2011年制定的,离现在已经十多年了;而课程方案最早,要追溯到2001年,已经二十多年没更新过了,很多内容,确实需要根据现实情况更新。所以这次新标准的实施,首先是对老课标的一次升级完善。另外,在双减的大背景下颁布,也能体现出,国家对未来教育改革方向的规划。课程方案课程标准是啥?课程方案是对某一学科课程的总体设计,或者说,是对教学过程的计划安排。简单说,每个年级上什么课,每周上几节,老师上课怎么讲,课程方案就是依据。课程标准是规定某一学科的课程性质、课程目标、内容目标、实施建议的教学指导性文件,也就是说,它规定了,老师上课都要讲什么内容。课程方案和课程标准,就像是一面旗帜,学校里所有具体的课程设计,都要朝它无限靠近。所以,这份文件的出台,其实给学校教育定了一个总基调,决定了我们孩子成长的走向。各门课程基于培养目标,将党的教育方针具体化细化为学生核心素养发展要求,明确本课程应着力培养的正确价值观、必备品格和关键能力。进一步优化了课程设置,九年一体化设计,注重幼小衔接、小学初中衔接,独立设置劳动课程。与时俱进,更新课程内容,改进课程内容组织与呈现形式,注重学科内知识关联、学科间关联。结合课程内容,依据核心素养发展水平,提出学业质量标准,引导和帮助教师把握教学深度与广度。通过增加学业要求、教学提示、评价案例等,增强了指导性。教育部将组织宣传解读、培训等工作,指导地方和学校细化课程实施要求,部署教材修订工作,启动一批课程改革项目,推动新修订的义务教育课程有效落实。
本课件是在MicorsoftPowe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 24.5 相似三角形的性质(第1课时)同步练习
- 委托招聘网站发布广告合同(3篇)
- 实习手册个人自我总结(十五篇)
- 运动会总结大会发言稿
- 24.4 解直角三角形 同步练习
- 2024-2025学年牛津译林版九年级英语上册Units 3~4 单元测试(含答案)
- 2024年广东省公务员考试《行测》真题及答案解析
- 劳动争议和解协议书范本
- 雷达课课程设计模板
- 医院与科研机构合作研究
- 2024年六年级上册教科版小学科学全册教案全
- 钢结构工程施工(第五版) 课件 单元六 钢结构施工验收
- 2024年北京市高考物理试卷(含答案逐题解析)
- 测试卷3:因式分解的方法三-配方法和拆添项法参考答案
- 雨季施工安全措施
- 沪教版四年级上册期中测试数学试卷
- 当代社会政策分析 课件 第五章 健康社会政策
- 建设项目使用草原可行性报告编写规范
- 2024年安全月全员消防安全知识培训
- 交换机维护方案
- 投资战略合作协议书模板范本
评论
0/150
提交评论