版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丽江市华坪县2025届八年级数学第一学期期末联考试题联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x人,小学在校生y人,由题意可列方程组()A. B.C. D.2.直线y=ax+b(a<0,b>0)不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.等腰三角形的一个角为50°,则它的底角为()A.50° B.65° C.50°或65° D.80°4.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.105.下列各组数中,勾股数的是()A.6,8,12 B.0.3,0.4,0.5 C.2,3,5 D.5,12,136.某班学生到距学校12km的烈士陵园扫墓,一部分同学骑自行车先行,经h后,其余同学乘汽车出发,由于□□□□□□,设自行车的速度为xkm/h,则可得方程为,根据此情境和所列方程,上题中□□□□□□表示被墨水污损部分的内容,其内容应该是()A.汽车速度是自行车速度的3倍,结果同时到达B.汽车速度是自行车速度的3倍,后部分同学比前部分同学迟到hC.汽车速度是自行车速度的3倍,前部分同学比后部分同学迟到hD.汽车速度比自行车速度每小时多3km,结果同时到达7.在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D8.某校要明买一批羽毛球拍和羽毛球,现有经费850元,已知羽毛球拍150元/套,羽毛球30元/盒,若该校购买了4套羽毛球拍,x盒羽毛球,则可列不等式()A. B.C. D.9.如图,一棵大树在离地面6米高的处断裂,树顶落在离树底部的8米处,则大树断裂之前的高度为()A.10米 B.16米 C.15米 D.14米10.已知关于x的方程=3的解是正数,那么m的取值范围为()A.m>-6且m≠-2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-211.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.112.如果一个多边形的内角和是1800°,这个多边形是()A.八边形 B.十四边形 C.十边形 D.十二边形二、填空题(每题4分,共24分)13.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.14.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为____.15.如图,将平行四边形ABCD的边DC延长到E,使,连接AE交BC于F,,当______时,四边形ABEC是矩形.16.在等腰中,若,则__________度.17.比较大小:__________1.(填>或<)18.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.三、解答题(共78分)19.(8分)观察下列各式:请你根据上面三个等式提供的信息,猜想:(1)_____________(2)请你按照上面每个等式反映的规律,写出用(为正整数)表示的等式:______________;(3)利用上述规律计算:(仿照上式写出过程)20.(8分)计算:(1)()+()(2)21.(8分)解不等式组,并把解集在数轴上表示出来.22.(10分)列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.23.(10分)已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.24.(10分)综合与实践(1)问题发现如图1,和均为等边三角形,点在同一直线上,连接.请写出的度数及线段之间的数量关系,并说明理由.(2)类比探究如图2,和均为等腰直角三角形,,点在同一直线上,为中边上的高,连接.填空:①的度数为____________;②线段之间的数量关系为_______________________________.(3)拓展延伸在(2)的条件下,若,则四边形的面积为______________.25.(12分)如图,在等腰中,,点在线段上运动(不与重合),连结,作,交线段于点.(1)当时,=°;点从点向点运动时,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由;(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.26.如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答【详解】设这所学校现初中在校生x人,小学在校生y人,则故选A【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程2、C【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.3、C【解析】试题分析:已知给出了一个内角是50°,没有明确是顶角还是底角,所以要分50°的角是顶角或底角两种情况分别进行求解.解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故选C.考点:等腰三角形的性质;三角形内角和定理.4、B【解析】利用勾股定理即可求出斜边长.【详解】由勾股定理得:斜边长为:=1.故选B.【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.5、D【解析】根据勾股定理的逆定理分别进行分析,从而得到答案.【详解】A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵2,3,5是无理数,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选D.【点睛】此题主要考查了勾股数的定义,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则△ABC是直角三角形.6、A【分析】根据方程的等量关系为:骑自行车的时间-乘汽车的时间=h,再根据时间=路程÷速度可知被墨水污损部分的内容.【详解】解:由方程可知汽车速度是自行车速度的3倍,结果同时到达.故选:A【点睛】本题考查根据分式方程找已知条件的能力以及路程问题,有一定的难度,解题关键是找准等量关系:骑自行车的时间-乘汽车的时间=h7、C【解析】试题解析:A.加上AB=DE,不能证明这两个三角形全等,故此选项错误;B.加上BC=EF,不能证明这两个三角形全等,故此选项错误;C.加上AB=FE,可用证明两个三角形全等,故此选项正确;D.加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选C.8、C【分析】根据题意,列出关于x的不等式,即可.【详解】根据题意:可得:,故选C.【点睛】本题主要考查一元一次不等式的实际应用,根据题意,找到不等量关系,列出不等式,是解题的关键.9、B【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.10、C【分析】先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选C.【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.11、D【解析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.12、D【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=1.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.二、填空题(每题4分,共24分)13、36【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.【详解】连接BD.∵∠A=90°,AB=3,DA=4,∴BD==5在△BCD中,∵BD=5,CD=12,BC=13,,即,∴△BCD是直角三角形,∴==,故答案为:36.【点睛】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.14、.【分析】首先过点F作FM⊥AO,根据等腰直角三角形的性质判定△DOC≌△CMF,得出CM=OD=2,MF=OC,然后判定△AMF是等腰直角三角形,利用面积关系,构建一元二次方程,即可得解.【详解】过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.【点睛】此题主要考查等腰直角三角形以及全等三角形的判定与性质,解题关键是利用面积关系构建方程.15、1【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【详解】解:当∠AFC=1∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=1∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为1.【点睛】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.16、40°或70°或100°.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【详解】(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°-∠A-∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°-∠A)=70°;故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况的时∠B的度数是解此题的关键.17、>【分析】先确定的取值范围是,即可解答本题.【详解】解:,;故答案为:>.【点睛】本题考查的是实数的大小比较,确定无理数的取值范围是解决此题的关键.18、1【解析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【详解】解:由题意可得:杯子内的筷子长度为:=11,则木筷露在杯子外面的部分至少有:20−11=1(cm).故答案为1.【点睛】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.三、解答题(共78分)19、(1);(2);(3),过程见解析【分析】(1)仿照已知等式确定出所求即可;
(2)归纳总结得到一般性规律,写出即可;
(3)原式变形后,仿照上式得出结果即可.【详解】解:(1);故答案为:;(2);故答案为:;(3)【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.20、(1)3+;(2)﹣﹣1.【分析】(1)先分别化简二次根式同时去括号,再合并同类二次根式;(2)先化简二次根式,同时计算除法,再将结果相加减即可.【详解】解:(1)原式=2+2+﹣,=3+;(2)原式=2﹣()+(﹣8)×3=﹣﹣1.【点睛】此题考查二次根式的混合计算,掌握正确的计算顺序是解题的关键.21、-1≤x﹤,数轴表示见解析【分析】先分别解出每个不等式的解集,再把各个解集表示在数轴上,取公共部分即为不等式组的解集.【详解】解:对于不等式组由①得:x≥-1,由②得:x﹤,所以原不等式组的解是:-1≤x﹤.【点睛】本题考查了解一元一次不等式组、数轴的应用,能正确解出不等式的解集且表示在数轴上是解答的关键.22、(1)学校购进黑文化衫80件,白文化衫20件;(2)该校这次义卖活动共获得1900元利润.【分析】(1)设学校购进黑文化衫x件,白文化衫y件,根据两种文化衫100件共花费2400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总利润=每件利润×数量,即可求出结论.【详解】解:(1)设学校购进黑文化衫x件,白文化衫y件,
依题意,得:;解得:答:学校购进黑文化衫80件,白文化衫20件.(2)(45-25)×80+(35-20)×20=1900(元).
答:该校这次义卖活动共获得1900元利润.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23、证明见解析【详解】解:∵AD平分∠EDC∴∠ADE=∠ADC又DE=DC,AD=AD∴△ADE≌△ADC∴∠E=∠C又∠E=∠B,∴∠B=∠C∴AB=AC24、(1),证明详见解析;(2)①;②;(3)35【分析】(1)和均为等边三角形,根据等边三角形的性质即可证得,所以即可求出,证明出.(2)①和均为等腰直角三角形,可证的,因为,所以∠CED=∠CDE=45°,可得出,②为中边上的高,则DE=2CM,由全等可知EB=AD,即可得.(3)四边形的面积等于△ACE的面积加上△AEB的面积,根据已知条件利用三角形的面积公式即可求解.【详解】(1)结论:证明:和均为等边三角形∵∴在和中,∴∴∴∠(2)解:∵∴∴在和中,∴∵△DCE是等腰直角三角形∴∠CDE=∠CED=45°∴∴∵∴EB=AD∵为中边上的高∴DE=2CM∴(3)∵,∴AE=10【点睛】本题考查的是三角形的综合问题,其中包括等腰三角形的性质,全等三角形的判定和性质,掌握这几个知识点是解题的关键.25、(1)35°,小;(2)当DC=3时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)根据三角形内角和定理得到∠BAD=35°,点从点向点运动时,∠BAD变大,三角形内角和定理即可得到答案;
(2)当DC=2时,利用∠DEC+∠ED
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- BF2024年商业场地租赁协议细则
- 2024年度建筑冲击钻作业专项协议
- 2024电影拍摄场地与设备租赁协议
- 2024车辆买卖中介服务协议
- 高等教育教材建设与数字化转型方案
- 低空经济的风险与挑战
- 高低压开关柜的市场需求特点
- 德育教师的家庭与社会角色策略
- 2024化工建设劳务合作协议
- 2024年度设备安装施工承包协议
- 八上历史全册知识梳理
- 2024秋期国家开放大学《公共部门人力资源管理》一平台在线形考(形考任务1至4)试题及答案
- 2024年银行考试-招商银行考试近5年真题集锦(频考类试题)带答案
- 中小学-校园文明礼仪-课件
- 期中考试试题(1-4单元)(试题)-2024-2025学年二年级上册数学青岛版
- 浙教版(2023)四年级上册信息科技-教学计划
- (新版)糖尿病知识竞赛考试题库300题(含答案)
- 技术创新课件教学课件
- 第四章 光现象章节练习2024-2025学年人教版八年级物理上册
- 个人简历模板(5套完整版)
- 《中国肿瘤防治核心科普知识(2024)》解读
评论
0/150
提交评论