版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省高淳区数学八年级第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列说法中正确的个数是()①当a=﹣3时,分式的值是0②若x2﹣2kx+9是完全平方式,则k=3③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质④在三角形内部到三边距离相等的点是三个内角平分线的交点⑤当x≠2时(x﹣2)0=1⑥点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)A.1个 B.2个 C.3个 D.4个2.下列各分式中,最简分式是()A. B. C. D.3.在同一坐标系中,函数与的图象大致是()A. B.C. D.4.下列表情中,是轴对称图形的是()A. B. C. D.5.2019年8月8日晚,第二届全国青年运动会在太原开幕,中国首次运用5G直播大型运动会.5G网络主要优势在于数据传输速率远远高于以前的蜂窝网络,比4G蜂窝网络快100倍.另一个优势是较低的网络延迟(更快的响应时间),低于0.001秒.数据0.001用科学记数法表示为()A. B. C. D.6.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80° B.50° C.30° D.20°7.计算÷×结果为()A.3 B.4 C.5 D.68.如图,在等腰中,,与的平分线交于点,过点做,分别交、于点、,若的周长为18,则的长是()A.8 B.9 C.10 D.129.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)
25
26
27
28
天数
1
1
2
3
则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,2710.如图所示,将矩形纸片折叠,使点与点重合,点落在点处,折痕为,若,那么的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=_____度.12.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x轴上的一个动点,则△PAB的最小周长为___________(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=___________时,四边形ABDC的周长最短;13.若关于的方程的解不小于,则的取值范围是___________________.14.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为___.15.如图,已知中,,,,点D为AB的中点,如果点P在线段BC上以2厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若当与全等时,则点Q运动速度可能为____厘米秒.16.计算:_______________.17.的绝对值是_____.18.在△ABC中,AB=AC,与∠BAC相邻的外角为80°,则∠B=________.三、解答题(共66分)19.(10分)由于受到手机更新换代的影响,某手机店经销的华为手机四月售价比三月每台降价元.如果卖出相同数量的华为手机,那么三月销售额为元,四月销售额只有元.(1)填表:销售额(元)单价(元台)销售手机的数量(台)三月___________四月_____________________(2)三、四月华为手机每台售价各为多少元?(3)为了提高利润,该店计划五月购进华为手机销售,已知华为每台进价为元,华为每台进价为元,调进一部分资金购进这两种手机共台(其中华为有台),在销售中决定在四月售价基础上每售出一台华为手机再返还顾客现金元,而华为按销售价元销售,若将这台手机全部售出共获得多少利润?20.(6分)如图,在中,,是的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作的平分线;(2)作线段的垂直平分线,与交于点,与边交于点,连接;(3)在(1)和(2)的条件下,若,求的度数.21.(6分)先化简再求值:求的值,其中.22.(8分)已知一次函数的图象经过点.(1)若函数图象经过原点,求k,b的值(2)若点是该函数图象上的点,当时,总有,且图象不经过第三象限,求k的取值范围.(3)点在函数图象上,若,求n的取值范围.23.(8分)阅读以下内容解答下列问题.七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是.(2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”.①求式子中m、n的值;②用“试根法”分解多项式x3+5x2+8x+1.24.(8分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.25.(10分)某市举行知识大赛,校、校各派出名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数中位数众数校选手成绩校选手成绩80(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.26.(10分)“军运会”期间,某纪念品店老板用5000元购进一批纪念品,由于深受顾客喜爱,很快售完,老板又用6000元购进同样数目的这种纪念品,但第二次每个进价比第一次每个进价多了2元.(1)求该纪念品第一次每个进价是多少元?(2)老板以每个15元的价格销售该纪念品,当第二次纪念品售出时,出现了滞销,于是决定降价促销,若要使第二次的销售利润不低于900元,剩余的纪念品每个售价至少要多少元?
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点分别判断可得.【详解】解:①当a=﹣3时,分式无意义,此说法错误;②若x2﹣2kx+9是完全平方式,则k=±3,此说法错误;③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,此说法正确;④在三角形内部到三边距离相等的点是三个内角平分线的交点,此说法正确;⑤当x≠2时(x﹣2)0=1,此说法正确;⑥点(﹣2,3)关于y轴对称的点的坐标是(2,3),此说法错误;故选:C.【点睛】考查分式的值为零的条件,解题的关键是掌握分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点.2、C【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】=,不是最简分式;=y-x,不是最简分式;是最简分式;==,不是最简分式.故选C.【点睛】此题主要考查了最简分式的概念,看分式的分子分母有没有能约分的公因式是解题关键.3、B【分析】根据解析式知:第二个函数比例系数为正数,故图象必过一、三象限,而必过一、三或二、四象限,可排除C、D选项,再利用k进行分析判断.【详解】A选项:,.解集没有公共部分,所以不可能,故A错误;B选项:,.解集有公共部分,所以有可能,故B正确;C选项:一次函数的图象不对,所以不可能,故C错误;D选项:正比例函数的图象不对,所以不可能,故D错误.故选:B.【点睛】本题考查正比例函数、一次函数的图象性质,比较基础.4、B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选B.【点睛】考查了轴对称图形,关键是正确找出对称轴的位置.5、A【分析】根据科学记数法的表示方法对数据进行表示即可.【详解】解:0.001=1×10-3,故选:A.【点睛】本题考查了科学记数法,掌握知识点是解题关键.6、D【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.7、B【解析】===.故选B.8、B【分析】先根据角平分线的定义及平行线的性质证明△BDO和△CEO是等腰三角形,再由等腰三角形的性质得BD=DO,CE=EO,则△ADE的周长=AB+AC,由此即可解决问题;【详解】解:∵在△ABC中,∠BAC与∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,CE=OE,∴△ADE的周长是:AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=18,∴AB=AC=1.故选:B.【点睛】本题考查等腰三角形的性质和判定,平行线的性质及角平分线的性质.利用平行线和角平分线推出等腰三角形是解题的关键.9、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.10、D【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt△ABE中,∠ABE=90°-∠AEB=26°.故选D.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题3分,共24分)11、1.【分析】根据等边三角形的性质得出∠ACB=60°,然后根据等腰三角形的性质以及三角形外角的性质即可求得∠E.【详解】解:∵△ABC是等边三角形,∴∠ACB=60°,∵CE=CD,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E==1°,故答案为1.【点睛】本题考查等边三角形的性质,关键在于牢记基础知识,通过题目找到关键性质.12、【分析】(1)根据题意,设出并找到B(4,-1)关于x轴的对称点是B',其坐标为(4,1),算出AB′+AB进而可得答案;
(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,-1),连接A'F.利用两点间的线段最短,可知四边形ABDC的周长最短等于A'F+CD+AB,从而确定C点的坐标值.【详解】解:(1)设点B(4,-1)关于x轴的对称点是B',可得坐标为(4,1),连接AB′,则此时△PAB的周长最小,∵AB′=,AB=,∴△PAB的周长为,故答案为:;(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.作点F(1,-1),连接A'F.那么A'(2,3).
设直线A'F的解析式为y=kx+b,则,解得:,∴直线A'F的解析式为y=4x-5,
∵C点的坐标为(a,0),且在直线A'F上,∴a=,故答案为:.【点睛】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.13、m≤-8【分析】先根据题意求到的解,会是一个关于的代数式,再根据不小于列出不等式,即可求得正确的答案.【详解】解:解得故答案为:.【点睛】本题考查的是方程的相关知识,根据题意列出含有m的不等式是解题的关键.14、【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.0000065第一个有效数字前有6个0(含小数点前的1个0),从而.15、2或【分析】,表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【详解】,,点D为AB的中点,,设点P、Q的运动时间为t,则,当时,,解得:,则,故点Q的运动速度为:厘米秒;当时,,,秒.故点Q的运动速度为厘米秒.故答案为2或厘米秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.16、【分析】先把化成,再根据同底数幂的乘法计算即可.【详解】解:原式=.【点睛】本题是对同底数幂乘法的考查,熟记同底数幂相乘,底数不变,指数相加.17、【解析】根据绝对值都是非负数,可得一个数的绝对值【详解】∵,∴的绝对值是3﹣,故答案为:3﹣.【点睛】本题考查了绝对值的化简,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.18、40°【分析】根据等边对等角可得∠B=∠C,然后根据三角形外角的性质可得∠B+∠C=80°,从而求出∠B.【详解】∵AB=AC,∴∠B=∠C∵与∠BAC相邻的外角为80°,∴∠B+∠C=80°即2∠B=80°∴∠B=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.三、解答题(共66分)19、(1);;;(2)三月华为手机每台售价为元,四月华为手机每台售价为元;(3)元【分析】(1)设三月华为P10plus手机每台售价为x元,则四月华为P10plus手机每台售价为(x-500)元,三月售出手机台,四月售出手机台,据些可解;
(2)根据数量=总价÷单价,结合三、四月份华为P10plus手机的销售量相等,即可列出分式方程,解之经检验后即可得出结论;
(3)设总利润为y元,根据总利润=单台利润×销售数量,即可求出获得的总利润.【详解】解:(1)设三月华为手机每台售价为元,则四月华为手机每台售价为元,三月售出手机台,四月售出手机台.故答案为:;;(2)依题意,得:解得:,经检验,是所列分式方程的解,且符合题意,答:三月华为手机每台售价为元,四月华为手机每台售价为元.(3)设总利润为元,依题意,得:.答:若将这台手机全部售出共获得元利润.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、(1)见解析;(2)见解析;(3)55°.【分析】(1)先以A为圆心,任意长为半径作圆,交AD,AC边于两点,再分别以这两点为圆心大于两点距离一半为半径作圆相交于一点,再连接A和这一点作出AM;(2)分别以A、C为圆心,大于AC为半径作圆交于两点,连接两点即可作出AC的垂直平分线;(3)通过垂直平分线和角平分线得出,从而求出∠B的度数.【详解】(1)先以A为圆心,任意长为半径作圆,交AD,AC边于两点,再以这两点为圆心作圆相交于一点,再连接A和这一点作出AM;(2)分别以A、C为圆心,大于AC为半径作圆交于两点,连接两点即可作出AC的垂直平分线;【点睛】本题是对平行四边形知识的考查,熟练掌握尺规作图和平行四边形知识是解决本题的关键.21、,【分析】先把分式的分子分母分解因式,然后约分化简,注意运算的结果要化成最简分式或整式,再把给定的值代入求值.【详解】;把代入得:原式.【点睛】考查了有理数的混合运算,关键是进行有理数的混合运算时,注意各个运算律的运用,可以运算过程得到简化.22、(1)k=,b=0;(2)k≤;(3)-1≤n≤8.【分析】(1)把,(0,0)代入,即可求解;(2)由一次函数的图象经过点,得到:b=-3k-4,即,结合条件,得到:k<0且-3k-4≥0,进而求出k的范围;(3)同(2)求出一次函数解析式为:,把,代入一次函数解析式,得到,消去k,得到m关于n的表达式,进而即可得到n的范围.【详解】(1)∵一次函数的图象经过点,∴-4=3k+b,∵函数图象经过原点,∴b=0,∴k=,即k=,b=0;(2)∵一次函数的图象经过点,∴-4=3k+b,即:b=-3k-4,∴一次函数解析式为:∵点是该函数图象上的点,当时,总有,且图象不经过第三象限,∴k<0且-3k-4≥0,即:k≤;(3)∵一次函数的图象经过点,∴-4=3k+b,即:b=-3k-4,∴一次函数解析式为:∵点在函数图象上,∴,即:,由①×3+②×2得:3m+2n=-20,∴,∵,∴,∴-1≤n≤8.【点睛】本题主要考查待定系数法求一次函数解析式,一次函数的图象和性质以及一次函数和不等式(组)的综合,熟练掌握待定系数法是解题的关键.23、(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2.【分析】(1)根据材料回答即可;(2)①分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值;②把x=﹣1代入x3+5x2+8x+1,得出多项式含有因式(x+1),再利用①中方法解出a和b,即可代入原式进行分解.【详解】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次,故答案为:降次;(2)①在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,令x=0,可得:,解得:n=-5,令x=1,可得:,解得:m=﹣3,故答案为:m=﹣3,n=﹣5;②把x=﹣1代入x3+5x2+8x+1,得x3+5x2+8x+1=0,则多项式x3+5x2+8x+1可分解为(x+1)(x2+ax+b)的形式,同①方法可得:a=1,b=1,所以x3+5x2+8x+1=(x+1)(x2+1x+1),=(x+1)(x+2)2.【点睛】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答.24、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线QM的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:,解得:∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=2,∴y=﹣x+2,∴无论m取何值,点Q总在某条确定的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网站课程设计摘要
- 移动开发学什么课程设计
- 课程设计网络路由配置
- 物理研究课程设计
- 药物代谢酶活性研究-洞察分析
- 铁路货运课程设计平面图
- 幼儿园中班表象课程设计
- 香料作物种植风险控制-洞察分析
- 羽绒制品行业智能化生产-洞察分析
- 注塑斜齿轮课程设计
- 《少儿主持人》课件
- 北京市朝阳区2024-2025学年高二上学期期末考试生物试卷(含答案)
- 2025年西藏拉萨市柳梧新区城市投资建设发展集团有限公司招聘笔试参考题库附带答案详解
- 2025年部编版一年级语文上册期末复习计划
- 储罐维护检修施工方案
- 地理2024-2025学年人教版七年级上册地理知识点
- 2024 消化内科专业 药物临床试验GCP管理制度操作规程设计规范应急预案
- 2024-2030年中国电子邮箱行业市场运营模式及投资前景预测报告
- 基础设施零星维修 投标方案(技术方案)
- 人力资源 -人效评估指导手册
- 大疆80分钟在线测评题
评论
0/150
提交评论