2025届广西贵港市覃塘三中学八年级数学第一学期期末综合测试模拟试题含解析_第1页
2025届广西贵港市覃塘三中学八年级数学第一学期期末综合测试模拟试题含解析_第2页
2025届广西贵港市覃塘三中学八年级数学第一学期期末综合测试模拟试题含解析_第3页
2025届广西贵港市覃塘三中学八年级数学第一学期期末综合测试模拟试题含解析_第4页
2025届广西贵港市覃塘三中学八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广西贵港市覃塘三中学八年级数学第一学期期末综合测试模拟试题试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下面有四个图案,其中不是轴对称图形的是()A. B. C. D.2.下列命题中,属于假命题的是()A.直角三角形的两个锐角互余 B.有一个角是的三角形是等边三角形C.两点之间线段最短 D.对顶角相等3.等于()A.2 B.-2 C.1 D.04.实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.5.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A. B. C. D.6.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=6cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定7.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有1.111111176克,用科学记数法表示是()A.7.6×118克 B.7.6×11-7克C.7.6×11-8克 D.7.6×11-9克8.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A.12 B.10C.8 D.69.若,,,,则它们的大小关系是()A. B. C. D.10.用不等式表示如图的解集,其中正确的是()A. B.x≥2 C. D.x≤2二、填空题(每小题3分,共24分)11.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是_____.12.若分式有意义,那么的取值范围是.13.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.14.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.15.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.16.若一个多边形内角和等于1260°,则该多边形边数是______.17.已知等腰三角形的两边长分别为4和8,则它的周长是_______.18.如图,中,,,是的角平分线,于点,若,则的面积为__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,一次函数与轴、轴分别交于点、两点,与正比例函数交于点.(1)求一次函数和正比例函数的表达式;(2)若点为直线上的一个动点(点不与点重合),点在一次函数的图象上,轴,当时,求点的坐标.20.(6分)已知,,求的值.21.(6分)先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.22.(8分)已知,如图,折叠长方形(四个角都是直角,对边相等)的一边使点落在边的点处,已知,,求的长.23.(8分)请用无刻度的直尺在下列方格中画一条线段将梯形面积平分(画出三种不同的画法).24.(8分)如图,在平面直角坐标系中,点A的坐标(2,0),点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合).〖初步探究〗(1)点B的坐标为;(2)点C在y轴上移动过程中,当等边三角形ACP的顶点P在第二象限时,连接BP,求证:;〖深入探究〗(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;〖拓展应用〗(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为.25.(10分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.26.(10分)列方程解应用题:为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小敏原来每分钟阅读的字数.

参考答案一、选择题(每小题3分,共30分)1、A【分析】定义:如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】根据轴对称图形的定义可知,A选项明显不是轴对称图形.【点睛】理解轴对称图形的定义是解题的关键.2、B【分析】根据直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等即可逐一判断.【详解】解:A.直角三角形的两个锐角互余,正确;B.有一个角是的三角形不一定是等边三角形;故B错误;C.两点之间线段最短,正确;D.对顶角相等,正确,故答案为:B.【点睛】本题考查了命题的判断,涉及直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等,解题的关键是掌握上述知识点.3、C【解析】根据任何非0数的0次幂都等于1即可得出结论.【详解】解:故选C.【点睛】此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.4、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,∴=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.5、D【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.四个汉字中只有“善”字可以看作轴对称图形.考点:轴对称图形6、B【分析】由题意直接根据全等三角形的性质进行分析即可得出答案.【详解】解:∵△ABC≌△BAD,AB=6cm,BD=6cm,AD=5cm,∴BC=AD=5cm.故选:B.【点睛】本题考查全等三角形的性质,全等三角形的对应边相等;全等三角形的对应角相等,找到全等三角形的对应边是解题的关键.7、C【解析】试题解析:对于绝对值小于1的数,用科学记数法表示为a×11n形式,其中1≤a<11,n是一个负整数,除符号外,数字和原数左边第一个不为1的数前面1的个数相等,根据以上内容得:1.11

111

1176克=7.6×11-8克,故选C.8、B【分析】已知为边上的高,要求的面积,求得即可,求证,得,设,则在中,根据勾股定理求,于是得到,即可得到答案.【详解】解:由翻折变换的性质可知,,,设,则,在中,,即,解得:,,.故选:.【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到是解题的关键.9、A【分析】先按法则把a,c,b,d计算结果,比较这些数的大小,再按从小到大的顺序,把a,c,b,d排序即可.【详解】=-0.04,,,=1,-4<-0.04<1<4,b<a<d<c.故选择:A.【点睛】本题考查乘方的运算,掌握乘方的性质,能根据运算的结果比较大小,并按要求排序是解决问题的关键.10、D【解析】解:根据“开口向左、实心”的特征可得解集为x≤2,故选D.二、填空题(每小题3分,共24分)11、14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.12、【分析】分式要有意义只需分母不为零即可.【详解】由题意得:x+1≠0,解得x≠﹣1.故答案为:x≠﹣1.【点睛】本题考查分式有意义的条件,关键在于熟练掌握基础知识.13、【分析】由数轴先判断出被覆盖的无理数的范围,再确定出,,–的范围即可得出结论.【详解】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16,∴3<<4,∵4<5<9,∴2<<3,∵1<3<4,∴1<<2,∴–2<–<–1,∴被墨迹覆盖住的无理数是,故答案为.【点睛】此题主要实数与数轴,算术平方根的范围,确定出,,–的范围是解本题的关键.14、55°【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°-35°=55°.【详解】如图,∵CD为斜边AB的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°-35°=55°故填:55°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.15、2秒或3.5秒【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9-3t=5-t,解方程即可;②当Q运动到E和B之间时,设运动时间为t,则得:3t-9=5-t,解方程即可.【详解】∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9−3t=5−t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t−9=5−t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2秒或3.5秒.【点睛】本题是动点问题与图形的结合,分情况讨论,根据平行四边形的性质,列出关系式即可求解.16、1【解析】试题分析:这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.试题解析:根据题意,得(n-2)•180=1260,解得n=1.考点:多边形内角与外角.17、1【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=1.故答案为:1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.18、1【分析】如图(见解析),由角平分线的性质可得,再根据即可得.【详解】如图,过点D作由题意得,是的角平分线故答案为:1.【点睛】本题考查了角平分线的性质,熟记角平分线的性质是解题关键.三、解答题(共66分)19、(1)一次函数解析式为,正比例函数的解析式为:;(2)点P的坐标为:或【分析】(1)点D(2,2)代入和中,求出解析式即可;(2)通过一次函数解析式求出点A的坐标,设P点坐标为(m,m),则Q点坐标为(m,-2m+6),再根据,解出m的值,即可求出点P的坐标.【详解】(1)把点D(2,2)代入中得:,解得:,∴一次函数解析式为,把点D(2,2)代入中得:,解得:,∴正比例函数的解析式为:;(2)把y=0代入得:,∴A点坐标为(3,0),OA=3,设P点坐标为(m,m),则Q点坐标为(m,-2m+6),,∵,∴,解得:或,∴点P的坐标为:或.【点睛】本题是对一次函数的综合考查,熟练掌握待定系数法求一次函数解析式及一次函数知识是解决本题的关键.20、72【分析】根据同底数幂相乘的逆运算,以及幂的乘方运算,即可得到答案.【详解】解:∵,,∴;【点睛】本题考查了幂的乘方,以及同底数幂相乘的逆运算,解题的关键是掌握运算法则进行计算.21、1【解析】试题分析:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.原式的第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,第三项先计算乘方运算,再计算除法运算,合并得到最简结果,最后把ab的值代入化简后的式子计算即可求出值.试题解析:解:原式=4﹣a2+a2﹣1ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=1.考点:整式的混合运算—化简求值..22、【分析】设,在△CEF中用勾股定理求得EC的长度.【详解】∴由勾股定理得,.设,则.∴由勾股定理得∴解得∴EC的长为1.【点睛】本题考查了勾股定理的应用,用代数式表示△CEF中各边的等量关系式,求出EC的长.23、见解析【分析】利用数形结合的思想解决问题即可.【详解】解:由题意梯形的面积为18,剪一个三角形面积为9即可;取两底的中点,连接这两个点得到的线段平分梯形的面积.【点睛】本题考查作图应用与设计,梯形的面积,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.24、(1);(2)证明见解析;(3)点P在过点B且与AB垂直的直线上,;(4).【分析】(1)作BD⊥x轴,与x轴交于D,利用等边三角形的性质和勾股定理即可解得;(2)根据等边三角形的性质可得两组对应边相等,再结合角的和差可得∠BAP=∠OAC,再利用SAS可证得全等;(3)由(2)可知PB⊥AB,由此可得P的运动轨迹,再求得AB的解析式,根据垂直的两条直线的一次项系数互为负倒数设BP的解析式,将B点坐标代入即可求得解析式;(4)利用两点之间距离公式求得P点坐标,再利用勾股定理求得BP,结合(2)可知OC=BP,由此可得C点坐标.【详解】解:(1)∵A(0,2),∴OA=2,过点B作BD⊥x轴,∵△OAB为等边三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案为:;(2)证明:∵△OAB和ACP为等边三角形,∴AC=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论