吉林省长春市名校调研2025届八年级数学第一学期期末综合测试模拟试题含解析_第1页
吉林省长春市名校调研2025届八年级数学第一学期期末综合测试模拟试题含解析_第2页
吉林省长春市名校调研2025届八年级数学第一学期期末综合测试模拟试题含解析_第3页
吉林省长春市名校调研2025届八年级数学第一学期期末综合测试模拟试题含解析_第4页
吉林省长春市名校调研2025届八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市名校调研2025届八年级数学第一学期期末综合测试模拟试题试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列因式分解正确的是A.4m2-4m+1=4m(m-1) B.a3b2-a2b+a2=a2(ab2-b)C.x2-7x-10=(x-2)(x-5) D.10x2y-5xy2=5xy(2x-y)2.如果把分式中的和都同时扩大2倍,那么分式的值()A.不变 B.扩大4倍 C.缩小2倍 D.扩大2倍3.若分式的值为,则的值是()A. B. C. D.任意实数4.下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C.三边长为的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上5.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A.50° B.40° C.60° D.80°6.化简÷的结果是()A. B. C. D.2(x+1)7.如图点按的顺序在边长为1的正方形边上运动,是边上的中点.设点经过的路程为自变量,的面积为,则函数的大致图象是().A. B. C. D.8.已知a、b、c是△ABC三边的长,则+|a+b-c|的值为()A.2a B.2b C.2c D.一9.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm10.一个多边形的内角和是720°,这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形11.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.12.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36° B.72° C.50° D.46°二、填空题(每题4分,共24分)13.若+(y﹣1)2=0,则(x+y)2020=_____.14.若分式的值为0,则实数的值为_________.15.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).16.计算:(3×10﹣5)2÷(3×10﹣1)2=_____.17.若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是_____.18.如图,与是两个全等的等边三角形,.有下列四个结论:①;②;③直线垂直平分线段;④四边形是轴对称图形.其中正确的结论有_____.(把正确结论的序号填在横线上)三、解答题(共78分)19.(8分)如图,直线角形与两坐标轴分别交于,直线与轴交于点与直线交于点面积为.(1)求的值(2)直接写出不等式的解集;(3)点在上,如果的面积为4,点的坐标.20.(8分)在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数进行了探究学习,请根据他们的对话解答问题.(1)张明:当时,我能求出直线与轴的交点坐标为;李丽:当时,我能求出直线与坐标轴围成的三角形的面积为;(2)王林:根据你们的探究,我发现无论取何值,直线总是经过一个固定的点,请求出这个定点的坐标.(3)赵老师:我来考考你们,如果点的坐标为,该点到直线的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.21.(8分)如图,已知和点、求作一点,使点到、的距离相等且.请作出点.(用直尺、圆规作图,不写作法,保留作图痕迹)22.(10分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用为5500元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙合做来完成,则该工程施工费用是多少?23.(10分)如图,四边形中,.动点从点出发,以的速度向点移动,设移动的时间为秒.(1)当为何值时,点在线段的垂直平分线上?(2)在(1)的条件下,判断与的位置关系,并说明理由.24.(10分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.25.(12分)我们来探索直角三角形分割成若干个等腰三角形的问题.定义:将一个直角三角形分割成个等腰三角形的分割线叫做分线.例如将一个直角三角形分割成个等腰三角形,需要条分割线,每一条分割线都是分线.(1)直角三角形斜边上的什么线一定是分线?(2)如图1是一个任意直角,,请画出分线;(3)如图2,中,,,,请用两种方法画出分线,并直接写出每种方法中分线的长.26.解答下列各题(1)已知:如图1,直线AB、CD被直线AC所截,点E在AC上,且∠A=∠D+∠CED,求证:AB∥CD;(2)如图2,在正方形ABCD中,AB=8,BE=6,DF=1.①试判断△AEF的形状,并说明理由;②求△AEF的面积.

参考答案一、选择题(每题4分,共48分)1、D【分析】A、利用完全平方公式分解;B、利用提取公因式a2进行因式分解;C、利用十字相乘法进行因式分解;D、利用提取公因式5xy进行因式分解.【详解】A、4m2-4m+1=(2m-1)2,故本选项错误;B、a3b2-a2b+a2=a2(ab2-b+1),故本选项错误;C、(x-2)(x-5)=x2-7x+10,故本选项错误;D、10x2y-5xy2=xy(10x-5y)=5xy(2x-y),故本选项正确;故选D.【点睛】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.2、D【分析】根据题意把原分式中的分别换成,2y代入原式,化简后再和原分式对比即可得到结论.【详解】解:把原分式中的分别换成,2y可得:,∴当把分式中的都扩大2倍后,分式的值也扩大2倍.故选D.【点睛】本题考查的是分式的基本性质的应用,熟记分式的基本性质并能用分式的基本性质进行分式的化简是解答本题的关键.3、A【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可求出的值.【详解】解:∵分式的值为∴解得:故选A.【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0,是解决此题的关键.4、D【分析】利用直角三角形三条高线相交于直角顶点可对A进行判断;根据等腰三角形三线合一可对B进行判断;根据勾股定理的逆定理可对C进行判断;根据线段垂直平分线定理的逆定理可对D进行判断.【详解】解:A、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A选项错误;B、等腰三角形的底边上的中线与与底边上的高重合,所以B选项错误;C、因为,所以三边长为,,不为为直角三角形,所以B选项错误;D、到线段两端距离相等的点在这条线段的垂直平分线上,所以D选项正确.故选:D.【点睛】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、C【分析】根据等腰三角形的性质推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=20°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【详解】∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:C.【点睛】此题考查等腰三角形的性质:等边对等角.6、A【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=•(x﹣1)=.故选A.【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.7、C【分析】分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的的面积,判断函数图像,选出正确答案即可.【详解】由点M是CD中点可得:CM=,(1)如图:当点P位于线段AB上时,即0≤x≤1时,y==x;(2)如图:当点P位于线段BC上时,即1<x≤2时,BP=x-1,CP=2-x,y===;(3)如图:当点P位于线段MC上时,即2<x≤时,MP=,y===.综上所述:.根据一次函数的解析式判断一次函数的图像,只有C选项与解析式相符.故选:C.【点睛】本题主要考查一次函数的实际应用,分类讨论,将分别表示为一次函数的形式是解题关键.8、B【解析】试题解析:∵三角形两边之和大于第三边,两边之差小于第三边,

∴a-b-c<0,a+b-c>0

∴+|a+b-c|=b+c-a+a+b-c=2b.

故选B.9、C【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.10、B【解析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选B.11、C【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解:根据题意,得.故选C.12、B【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.【点睛】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.二、填空题(每题4分,共24分)13、1【分析】利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.【详解】解:∵+(y﹣1)2=0,∴x+2=0,y﹣1=0,解得:x=﹣2,y=1,则(x+y)2020=(﹣2+1)2020=1.故答案为:1.【点睛】本题考查了偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.14、【分析】根据分式值为0的条件①分母不为0,②分子等于0计算即可.【详解】解:由题意得且由解得;由解得或1(舍去)所以实数的值为.故答案为:.【点睛】本题考查了分式值为零的条件,熟练掌握分式值为0时满足得条件是解题的关键,易错点在于容易忽视分式的分母不为0.15、【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.

∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,

∴A′D==2(m),BD=1+0.6-0.4=1.2(m),

∴在直角△A′DB中,A′B=(m),故答案是:.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.16、.【分析】首先把括号里的各项分别乘方,再根据单项式除法进行计算,最后把负整数指数化为正整数指数即可.【详解】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8=.故答案为:.【点睛】此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.17、-10【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y),根据关于y轴对称的点,纵坐标相同,横坐标互为相反数得出m,n的值,从而得出mn.【详解】解:∵点A(2,m)关于y轴的对称点是B(n,5),∴n=-2,m=5,∴mn=-10.故答案为-10.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.关于y轴对称的点,纵坐标相同,横坐标互为相反数,是需要识记的内容.18、②③④【分析】①通过全等和等边三角形的性质解出答案即可判断;②根据题意推出即可判断;③延长BM交CD于N,利用外角定理推出即可判断;④只需证明四边形ABCD是等腰梯形即可判断.【详解】①∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°﹣60°﹣60°﹣90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;②∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;③延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;④根据②同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD∥BC,又∵AB=CD,∴四边形ABCD是等腰梯形,∴四边形ABCD是轴对称图形.故答案为:②③④.【点睛】本题考查等边三角形的性质、三角形内角和定理、三角形外角性质、平行线的判定,关键在于熟练掌握相关基础知识.三、解答题(共78分)19、(1);(2);(3)P(-5,0)或(3,0).【分析】(1)将x=0分别代入两个一次函数表达式中求出点A、C的坐标,进而即可得出AC的长度,再根据三角形的面积公式结合△ACD的面积即可求出点D的横坐标,利用一次函数图象上的点的坐标特点即可求出点D的坐标,由点D的坐标即可得到结论.(2)先移项,再合并同类项,即可求出不等式的解集.(3)由直线AB的表达式即可得出B的坐标,根据三角形面积为4,可计算PB的长,根据图形和点B的坐标可得P的坐标.【详解】(1)当x=0时,,∴A(0,1),C(0,4)∴AC=3∴∴当x=1时,∴D(1,2)将D(1,2)代入中解得(2)(3)在中,当时,∴B(-1,0)∵点P在x轴上设P(m,0)∵∴∴解得或∴P(-5,0)或(3,0).【点睛】本题考查了直线解析式的几何问题,掌握直线解析式的性质和解法、解不等式的方法、三角形面积公式是解题的关键.20、(1)(3,0),;(2)(2,1);(3);【分析】(1)张明:将k值代入求出解析式即可得到答案;李丽:将k值代入求出解析式,得到直线与x轴和y轴的交点,即可得到答案;(2)将转化为(y-1)=k(x-2)正比例函数,即可求出;(3)由图像必过(2,1)设必过点为A,P到直线的距离为PB,发现直角三角形ABP中PA是最大值,所以当PA与垂直时最大,求出即可.【详解】解:(1)张明:将代入得到y=-x-2×(-1)+1y=-x+3令y=0得-x+3=0,得x=3所以直线与轴的交点坐标为(3,0)李丽:将代入得到y=2x-3直线与x轴的交点为(,0)直线与y轴的交点为(0,-3)所以直线与坐标轴围成的三角形的面积=(2)∵转化为(y-1)=k(x-2)正比例函数∴(y-1)=k(x-2)必过(0,0)∴此时x=2,y=1通过图像平移得到必过(2,1)(3)由图像必过(2,1)设必过点为A,P到直线的距离为PB由图中可以得到直角三角形ABP中AP大于直角边PB所以P到最大距离为PA与直线垂直,即为PA∵P(-1,0)A(2,1)得到PA=答:点P到最大距离的距离存在最大值为.【点睛】此题主要考查了一次函数的性质及一次函数的实际应用-几何问题,正确理解点到直线的距离是解题的关键.21、答案见解析【分析】作出∠ECD的平分线,线段AB的垂直平分线,两线的交点就是P点.【详解】解:如图所示:点P为所求.【点睛】此题主要考查了复杂作图,解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)线段垂直平分线上的点到线段两端点的距离相等.22、(1)这项工程的规定时间是30天;(2)该工程的施工费用为153000元【分析】(1)设这项工程的规定时间是x天,根据工程问题的等量关系列分式方程求解;(2)通过第一问求出的甲、乙单独完成的时间,算出合作需要的时间,乘以每天的费用得到总费用.【详解】解:(1)设这项工程的规定时间是x天,根据题意得:,解得,经检验是方程的解,答:这项工程的规定时间是30天;(2)该工程由甲、乙合做完成,所需时间为;(天),则该工程的施工费用是:18×(5500+3000)=153000(元),答:该工程的施工费用为153000元.【点睛】本题考查分式方程的应用,解题的关键是掌握工程问题中的列式方法.23、(1)当x=5时,点E在线段CD的垂直平分线上;(2)DE与CE的位置关系是DE⊥CE,理由见解析【分析】(1)根据垂直平分线的性质得出DE=CE,利用勾股定理得出,然后建立方程求解即可(2)根据第(1)问的结果,易证△ADE≌△BEC,根据全等三角形的性质有∠ADE=∠CEB,再通过等量代换可得∠AED+∠CEB=90°,进而求出∠DEC=90°,则可说明DE⊥CE.【详解】解:(1)∵点E在线段CD的垂直平分线上,∴DE=CE,∵∠A=∠B=90°解得∴当x=5时,点E在线段CD的垂直平分线上(2)DE与CE的位置关系是DE⊥CE;理由是:当x=5时,AE=2×5cm=10cm=BC,∵AB=25cm,DA=15cm,CB=10cm,∴BE=AD=15cm,在△ADE和△BEC中,∴△ADE≌△BEC(SAS),∴∠ADE=∠CEB,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠AED+∠CEB=90°,∴∠DEC=180°-(∠AED+∠CEB)=90°,∴DE⊥CE.【点睛】本题主要考查勾股定理和全等三角形的判定及性质,掌握勾股定理和全等三角形的判定及性质是解题的关键.24、(1)①60°;②4;③150°;(2)OA2+2OB2=OC2时,∠ODC=90°,理由详见解析.【分析】(1)①△ABO旋转后AB与BC重合,根据旋转的性质可知∠ABC是旋转角,由△ABC是等边三角形即可知答案.②由旋转的性质可知OB=BD,根据旋转角是60°可知∠OBD=60°即可证明△BOD是等边三角形,进而求出OD的长.③根据OD=4,OC=5,CD=3可证明△OCD是直角三角形,根据△BOD是等边三角形即可求出∠BDC得度数.(2)根据旋转的性质可知旋转角为90°,可证明三角形BOD是等腰直角三角形,进而求出OD=OB,根据△OCD是直角三角形即可知答案.【详解】(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,熟练掌握旋转的性质是解题关键.25、(1)中线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论