2025届河南省郑州市金水区为民中学八年级数学第一学期期末综合测试模拟试题含解析_第1页
2025届河南省郑州市金水区为民中学八年级数学第一学期期末综合测试模拟试题含解析_第2页
2025届河南省郑州市金水区为民中学八年级数学第一学期期末综合测试模拟试题含解析_第3页
2025届河南省郑州市金水区为民中学八年级数学第一学期期末综合测试模拟试题含解析_第4页
2025届河南省郑州市金水区为民中学八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省郑州市金水区为民中学八年级数学第一学期期末综合测试模拟试题综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则的值是()A. B. C.﹣5 D.52.对于一次函数y=﹣2x+1,下列说法正确的是()A.图象分布在第一、二、三象限B.y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y23.下列计算结果正确的是()A.﹣2x2y3+xy=﹣2x3y4 B.3x2y﹣5xy2=﹣2x2yC.(3a﹣2)(3a﹣2)=9a2﹣4 D.28x4y2÷7x3y=4xy4.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.5.如果y=x-2a+1是正比例函数,则a的值是()A. B.0 C. D.-26.已知关于的分式方程的解是非负数,则的取值范围是()A. B. C.且 D.且7.由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC28.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为().A.45°; B.64°; C.71°; D.80°.9.下列各命题的逆命题是真命题的是A.对顶角相等 B.全等三角形的对应角相等C.相等的角是同位角 D.等边三角形的三个内角都相等10.下列运算正确的是()A.(﹣2xy3)2=4x2y5 B.(﹣2x+1)(﹣1﹣2x)=4x2﹣1C.(x﹣2y)2=x2﹣2xy+4y2 D.(a﹣b)(a+c)=a2﹣bc11.下列图形是轴对称图形的是()A. B. C. D.12.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为()A.3 B.2 C. D.二、填空题(每题4分,共24分)13.在实数中:①,②,③,④,⑤0.8080080008…(相邻两个8之间0的个数逐次加1),⑥,无理数是_____________.(只填序号)14.近似数3.1415926用四舍五入法精确到0.001的结果是_____.15.在中,,点是中点,,______.16.如图,直角坐标系中,直线和直线相交于点,则方程组的解为__________.17.一个等腰三角形的周长为20,一条边的长为6,则其两腰之和为__________.18.若,,则=_________.三、解答题(共78分)19.(8分)求下列各式中的x:(1)2x2=8(2)(x﹣1)3﹣27=020.(8分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于,那么每套售价至少是多少元?21.(8分)如图,在平面直角坐标系中,点的坐标是,动点从原点O出发,沿着轴正方向移动,以为斜边在第一象限内作等腰直角三角形,设动点的坐标为.(1)当时,点的坐标是;当时,点的坐标是;(2)求出点的坐标(用含的代数式表示);(3)已知点的坐标为,连接、,过点作轴于点,求当为何值时,当与全等.22.(10分)在正方形网格中建立如图的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:(1)将△ABC向下平移5单位长度,画出平移后的并写出点A对应点的坐标;(2)画出关于y轴对称的并写出的坐标;(3)=______.(直接写答案)(4)在x轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)23.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?24.(10分)如图,在平面直角坐标系中,点A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.(1)图1中,点C的坐标为;(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B作BF⊥BE交y轴于点F.①当点E为线段CD的中点时,求点F的坐标;②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.25.(12分)某校为奖励该校在南山区第二届学生技能大赛中表现突出的20名同学,派李老师为这些同学购买奖品,要求每人一件,李老师到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,购买笔记本没有优惠:买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>10)支钢笔,所需费用为y元,请你求出y与x之间的函数关系式;(3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低.26.如图,,,.求证:.

参考答案一、选择题(每题4分,共48分)1、C【分析】直接利用关于轴对称点的性质得出,的值,进而得出答案.【详解】∵点P(,3)、Q(-2,)关于轴对称,

∴,,

则.

故选:C.【点睛】本题主要考查了关于,轴对称点的性质,正确得出,的值是解题关键.注意:关于轴对称的点,纵坐标相同,横坐标互为相反数.2、D【分析】根据一次函数的图象和性质,逐一判断选项,即可得到答案.【详解】A、∵k=﹣2<0,b=1>0,∴图象经过第一、二、四象限,故不正确;B、∵k=﹣2,∴y随x的增大而减小,故不正确;C、∵当x=1时,y=﹣1,∴图象不过(1,﹣2),故不正确;D、∵y随x的增大而减小,∴若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y2,故正确;故选:D.【点睛】本题主要考查一次函数的图象和性质,掌握一次函数解析式系数的几何意义,增减性,以及一次函数图象上点的坐标特征,是解题的关键.3、D【分析】﹣2x2y3+xy和3x2y﹣5xy2不能合并同类项;(3a﹣2)(3a﹣2)是完全平方公式,计算结果为9a2+4﹣12a.【详解】解:A.﹣2x2y3+xy不是同类项,不能合并,故A错误;B.3x2y﹣5xy2不是同类项,不能合并,故B错误;C.(3a﹣2)(3a﹣2)=9a2+4﹣12a,故C错误;D.28x4y2÷7x3y=4xy,故D正确.故选:D.【点睛】本题考查合并同类项,整式的除法,完全平方公式;熟练掌握合并同类项,整式的除法的运算法则,牢记完全平方公式是解题的关键.4、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得

y=30-5t,

∵y≥0,t≥0,

∴30-5t≥0,

∴t≤6,

∴0≤t≤6,

∴y=30-5t是降函数且图象是一条线段.

故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.5、A【分析】根据正比例函数的定义求解即可.【详解】解:∵y=x-2a+1是正比例函数,∴可得-2a+1=0解得a=,故选:A.【点睛】本题考查了正比例函数的定义,掌握知识点是解题关键.6、C【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【详解】解:去分母得,

m-1=x-1,

解得x=m-2,

由题意得,m-2≥0,

解得,m≥2,

x=1是分式方程的增根,所有当x=1时,方程无解,即m≠1,

所以m的取值范围是m≥2且m≠1.

故选C.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.7、A【分析】直角三角形的判定:有一个角是直角的三角形,两个锐角互余,满足勾股定理的逆定理。用这三个,便可找到答案.【详解】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.【点睛】知道直角三角形判定的方法(直角三角形的判定:有一个角是直角的三角形,两个锐角互余,满足勾股定理的逆定理),会在具体当中应用.8、C【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【详解】由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:C.【点睛】考查三角形内角和定理以及折叠的性质,掌握三角形的内角和定理是解题的关键.9、D【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;

D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.10、B【解析】试题解析:A、结果是故本选项不符合题意;B、结果是故本选项符合题意;C、结果是故本选项不符合题意;D、结果是,故本选项不符合题意;故选B.11、B【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.12、D【分析】设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论.【详解】解:设点C的横坐标为m,∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m),∵四边形ABCD为正方形,∴BC∥x轴,BC=AB,又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等,∴点B的坐标为(﹣,﹣3m),∴﹣﹣m=﹣3m,解得:k=,经检验,k=是原方程的解,且符合题意.故选:D.【点睛】本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.二、填空题(每题4分,共24分)13、①④⑤【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:无理数有①,④,⑤0.8080080008…(相邻两个8之间0的个数逐次加1),故答案为:①④⑤.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.14、3.2【分析】根据近似数的精确度,用四舍五入法,即可求解.【详解】近似数3.1415926用四舍五入法精确到1.111的结果为3.2.故答案为:3.2.【点睛】本题主要考查近似数的精确度,掌握四舍五入法,是解题的关键.15、【分析】根据等腰三角形的性质和直角三角形的性质即可得到结论.【详解】解:如图,∵点M是AB中点,

∴AM=CM,

∴∠ACM=∠A=25°,∵∠ACB=90°,

∴∠BCM=90°-25°=65°,

故答案为:65°.【点睛】本题考查了等腰三角形和直角三角形的性质,熟练掌握等边对等角的性质定理是解题的关键.16、【分析】根据题意,将代入中求出m即可得到方程组的解.【详解】将代入中得,则∴∵直线和直线相交于点∴的解为.故答案为:.【点睛】本题主要考查了一次函数图像的交点与二元一次方程组的关系,熟练掌握相关知识是解决本题的关键.17、1或14【分析】已知条件中,没有明确说明已知的边长是否是腰长,所以有两种情况讨论,还应判定能否组成三角形.【详解】解:①底边长为6,则腰长为:(20-6)÷2=7,所以另两边的长为7,7,能构成三角形,7+7=14;②腰长为6,则底边长为:20-6×2=8,能构成三角形,6+6=1.故答案为1或14.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.18、21【分析】根据同底数幂相乘逆用运算法则,即可得到答案.【详解】解:,故答案为:21.【点睛】本题考查了同底数幂相乘,解题的关键是熟练掌握运算法则进行计算.三、解答题(共78分)19、(1)x=±2;(2)x=1【分析】(1)先将方程化系数为1,然后两边同时开平方即可求解;(2)先移项,再两边同时开立方即可求解.【详解】解:(1)∵2x2=8,∴x2=1,∴x=±2;(2)∵(x﹣1)3﹣27=0∴(x﹣1)3=27,∴x﹣1=3,∴x=1.【点睛】本题考查的知识点是平方根与立方根,熟记平方根与立方根的定义是解此题的关键.20、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x套,第二次购进2x套,然后根据题意列分式解答即可;(2)设每套售价是y元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进套运动服,由题意得解这个方程,得经检验,是所列方程的根;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为元,由题意得,解这个不等式,得.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.21、(1)(2,2);(,);(2)P(,);(3).【分析】(1)当时,三角形AOB为等腰直角三角形,所以四边形OAPB为正方形,直接写出结果;当时,作PN⊥y轴于N,作PM⊥x轴与M,求出△BNP≌△AMP,即可得到ON+OM=OB-BN+OA+AM=OB+OA,即可求出;(2)作PE⊥y轴于E,PF⊥x轴于F,求出△BEP≌△AFP,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;(3)根据已知求出BC值,根据上问得到OQ=,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.【详解】(1)当时,三角形AOB为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN=∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PMBN=AM∴四边形OMPN为正方形,OM=ON=PN=PM∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=∴P(,)(2)如图作PE⊥y轴于E,PF⊥x轴于F,则四边形OEPF为矩形∵∠BPE+∠BPF=∠APF+∠BPF=90°∴∠BPE=∠APF∵∠BEP=∠AFP∴△BEP≌△AFP∴PE=PFBE=AF∴四边形OEPF为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴OE=OF=PE=PF=∴P(,);(3)根据题意作PQ⊥y轴于Q,作PG⊥x轴与G∵B(0,2)C(1,1)∴BC=由上问可知P(,),OQ=∵△PQB≌△PCB∴BC=QB=∴OQ=BQ+OB=+2=解得t=.【点睛】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.22、(1)见解析,(4,−1);(2)见解析,(−4,−1);(3)2;(4)见解析【分析】(1)根据网格结构找出点A、B、C向下平移5个单位的对应点、、的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标.(2)根据网格结构找出点A1、B1、C1关于y轴对称的点、、的位置,顺次连接即可,再根据平面直角坐标系写出点的坐标;(3)根据三角形的面积公式计算即可;(4)作点B关于x轴的对称点,连接交x轴于点P,则点P即为所求.【详解】解:(1)如图所示,即为所求,点的坐标(4,−1);(2)如图所示,即为所求,(−4,−1);(3)=×2×2=2,故答案为:2;(4)如图所示,点P即为所求.【点睛】本题考查了网格中平移图形,对称图形的作图方法,“将军饮马”模型求两点之间线段最短问题,网格中三角形面积的求法,熟练掌握网格中的作图方法是解题的关键,注意熟记图形模型和性质.23、甲、乙两种节能灯分别购进40、60只;商场获利1300元.【分析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得

,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利元,答:商场获利1300元.【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.24、(1)C(4,1);(2)①F(0,1),②【解析】试题分析:过点向轴作垂线,通过三角形全等,即可求出点坐标.过点E作EM⊥x轴于点M,根据的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论