2025届浙江杭州上城区八年级数学第一学期期末考试模拟试题含解析_第1页
2025届浙江杭州上城区八年级数学第一学期期末考试模拟试题含解析_第2页
2025届浙江杭州上城区八年级数学第一学期期末考试模拟试题含解析_第3页
2025届浙江杭州上城区八年级数学第一学期期末考试模拟试题含解析_第4页
2025届浙江杭州上城区八年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江杭州上城区八年级数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称 B.关于直线y=2对称C.关于x轴对称 D.关于y轴对称2.小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是()A.①④ B.②③C.①② D.③④3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①② B.②③ C.①②③ D.①②③④4.下列运算中正确的是()A. B. C. D.5.如图,在中,分别是边的中点,已知,则的长()A. B. C. D.6.如图,在中,,是高,,,则的长为()A. B. C. D.7.在同一坐标系中,函数与的图象大致是()A. B.C. D.8.下列图形中,不具有稳定性的是()A. B. C. D.9.等式(x+4)0=1成立的条件是()A.x为有理数 B.x≠0 C.x≠4 D.x≠-410.以下列各线段长为边,能组成三角形的是()A. B. C. D.11.如果一个多边形的内角和是1800°,这个多边形是()A.八边形 B.十四边形 C.十边形 D.十二边形12.下列各式从左到右的变形正确的是()A.= B.=C.=- D.=二、填空题(每题4分,共24分)13.已知,则代数式______.14.的相反数是__________.15.已知,则代数式的值等于______.16.如图,已知,,,则__________.17.下列图形中全等图形是_____(填标号).18.计算的结果是______.三、解答题(共78分)19.(8分)阅读下面的情景对话,然后解答问题:老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形中是否存在奇异三角形呢?问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?___________填“是”或“否”)问题(2):已知中,两边长分别是5,,若这个三角形是奇异三角形,则第三边长是_____________;问题(3):如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.试说明:是奇异三角形.20.(8分)一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.21.(8分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)——记录下来,则在这组数据中,众数是多少?22.(10分)先化简再求值:()÷,其中x=(﹣1)1.23.(10分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.24.(10分)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:______;______;______.(2)求线段所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.25.(12分)为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?26.如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据轴对称的性质解决问题即可.【详解】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.【点睛】此题主要考查坐标与图形,解题的关键是熟知轴对称的性质.2、C【解析】∵OP平分∠AOB,∴∠1=∠2,∵MN∥OB,∴∠2=∠3,所以补出来的部分应是:①、②.故选C.点睛:掌握平行线的性质、角平分线的性质.3、C【分析】证明≌,得出,正确;由,得出,正确;证出,,正确;由,不能确定,不正确;即可得出答案.【详解】解:∵∠CAE=90°,AE=AC,∴∠E=∠ACE=45°,∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACF=∠E=45°,①正确;∵S四边形ABCD=S△ABC+S△ACD,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.4、D【分析】根据完全平方公式、同底数幂的乘法除法法则、幂的乘方法则计算即可.【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D.【点睛】本题考查了完全平方公式、同底数幂的乘法除法法则、幂的乘方法则,熟练掌握运算法则是解决本题的关键.5、D【分析】由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得DE的值即可.【详解】∵△ABC中,D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,故DE=AD=×10=1.故选:D.【点睛】考查三角形中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.6、B【分析】根据同角的余角相等可得∠BCD=∠A=30°,然后根据30°所对的直角边是斜边的一半即可依次求出BC和AB.【详解】解:∵,是高∴∠ACB=∠ADC=90°∴∠BCD+∠ACD=∠A+∠ACD=90°∴∠BCD=∠A=30°在Rt△BCD中,BC=2BD=4cm在Rt△ABC中,AB=2BC=8cm故选B.【点睛】此题考查的是余角的性质和直角三角形的性质,掌握同角的余角相等和30°所对的直角边是斜边的一半是解决此题的关键.7、B【分析】根据解析式知:第二个函数比例系数为正数,故图象必过一、三象限,而必过一、三或二、四象限,可排除C、D选项,再利用k进行分析判断.【详解】A选项:,.解集没有公共部分,所以不可能,故A错误;B选项:,.解集有公共部分,所以有可能,故B正确;C选项:一次函数的图象不对,所以不可能,故C错误;D选项:正比例函数的图象不对,所以不可能,故D错误.故选:B.【点睛】本题考查正比例函数、一次函数的图象性质,比较基础.8、B【分析】根据三角形具有稳定性,四边形不具有稳定性即可判断.【详解】解:因为三角形具有稳定性,四边形不具有稳定性,∴A、C、D三个选项的图形具有稳定性,B选项图形不具有稳定性故选B.【点睛】本题考查三角形的稳定性,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、D【解析】试题分析:0指数次幂的性质:.由题意得,x≠-4,故选D.考点:0指数次幂的性质点评:本题属于基础应用题,只需学生熟练掌握0指数次幂的性质,即可完成.10、D【分析】根据三角形任意两边之和大于第三边进行判断即可.【详解】A:,故不能构成三角形;B:,故不能构成三角形;C:,故不能构成三角形;D:,故可以构成三角形;故选:D.【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.11、D【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=1.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.12、D【解析】解:A.根据分式的基本性质应该分子和分母都除以b,故本选项错误;B.根据分式的基本性质,分子和分母都加上2不相等,故本选项错误;C.,故本选项错误;D.∵a−2≠0,∴,故本选项正确;故选D.二、填空题(每题4分,共24分)13、1【分析】x2-1=x,则x2-x=1,x3-x2=x,x3-2x2+2020=x3-x2-x2+2020,即可求解.【详解】x2-1=x,则x2-x=1,

x3-x2=x,

x3-2x2+2020=x3-x2-x2+2020=x-x2+2020=-1+2020=1,

故答案为1.【点睛】此题考查分解因式的实际运用,解题的关键是由x2-x=1推出x3-x2=x.14、-【分析】只有符号不同的两个数,我们称这两个数互为相反数.【详解】解:的相反数为-.故答案为:-.【点睛】本题主要考查的是相反数的定义,属于基础题型.解决这个问题只要明确相反数的定义即可.15、【解析】分析:将所求代数式变形为:代入求值即可.详解:原式故答案为点睛:考查二次根式的化简求值,对所求式子进行变形是解题的关键.16、20°【分析】由,得∠AEC=,结合,即可得到答案.【详解】∵,,∴∠AEC=,∵∠1+∠AEC+∠C=180°,∴∠C=180°-130°-30°=20°.故答案是:20°.【点睛】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.17、⑤和⑦【解析】由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合,故答案为⑤和⑦.18、0【分析】先计算绝对值、算术平方根,再计算减法即可得.【详解】解:原式==0,【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质.三、解答题(共78分)19、(1)是;(2);(3)见解析【分析】问题(1)根据题中所给的奇异三角形的定义直接进行判断即可.

问题(2)分c是斜边和b是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.

问题(3)利用勾股定理得AC2+BC2=AB2,AD2+BD2=AB2,由AD=BD,则AD=BD,所以2AD2=AB2,加上AE=AD,CB=CE,所以AC2+CE2=2AE2,然后根据新定义即可判断△ACE是奇异三角形.【详解】(1)解:设等边三角形的一边为a,则a2+a2=2a2,

∴符合奇异三角形”的定义.

∴“等边三角形一定是奇异三角形”是真命题;

故答案为:是;(2)解:①当为斜边时,另一条直角边,∵(或)∴Rt△ABC不是奇异三角形,②当5,是直角边时,斜边∵,∴,∴Rt△ABC是奇异三角形,

故答案为;(3)证明∵∠ACB=∠ADB=90°,

∴AC2+BC2=AB2,AD2+BD2=AB2,

∵AD=BD,

∴2AD2=AB2,

∵AE=AD,CB=CE,

∴AC2+CE2=2AE2,

∴△ACE是奇异三角形.【点睛】本题属于四边形综合题,考查了解直角三角形,勾股定理,奇异三角形的定义等知识,解题的关键是理解题意,灵活运用.20、(1)20天;(2)方案一合算【分析】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a,由此可求出甲、乙两队的施工效率,然后根据“甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成”列出关于x的分式方程,解之经检验后即可得出结论;(2)利用“总费用=单天费用×工作时间”分别求出方案一、二所需费用,比较后即可得出结论.【详解】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a因此,甲队的施工效率为,乙队的施工效率为由题意得:整理得:解得:经检验,是原分式方程的解,且符合题意答:规定工期为20天;(2)方案一所需费用为(万元)方案二所需费用为(万元)因故选择方案一合算.【点睛】本题考查了分式方程的实际应用,依据题意,正确列出分式方程是解题关键.21、(1)80人;(2)11.5元;(3)10元.【解析】试题分析:(1)参加这次夏令营活动的初中生所占比例是:1﹣10%﹣20%﹣30%=40%,就可以求出人数.(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出平均数.(3)因为初中生最多,所以众数为初中生捐款数.试题解析:解:(1)参加这次夏令营活动的初中生共有200×(1-10%-20%-30%)=80人;

(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,

所以平均每人捐款==11.5(元);

(3)因为初中生最多,所以众数为10(元).22、,【分析】直接将括号里面通分运算,再计算除法,化简后,再代入x的值得出答案.【详解】解:原式======当x=(﹣1)1=1时,原式=【点睛】本题主要考查分式的化简求值,掌握分式加减乘除混合运算顺序和法则是解题的关键.23、(1)证明见解析;(2)112.5°.【分析】根据同角的余角相等可得到结合条件,再加上可证得结论;

根据得到根据等腰三角形的性质得到由平角的定义得到【详解】证明:在△ABC和△DEC中,,(2)∵∠ACD=90°,AC=CD,∴∠1=∠D=45°,∵AE=AC,∴∠3=∠5=67.5°,∴∠DEC=180°-∠5=112.5°.24、(1)10,15,200;(2);(3)距图书馆的距离为米【分析】(1)根据爸爸的速度和行驶的路程可求出a的值,然后用a+5即可得到b的值,利用路程除以时间即可得出m的值;(2)用待定系数法即可求线段所在直线的解析式;(3)由题意得出直线OD的解析式,与直线BC的解析式联立求出交点坐标,再用总路程减去交点纵坐标即可得出答案.【详解】(1)(分钟)(分钟)米/分故答案为:10,15,200;(2)设线段所在直线的解析式为因为点在直线BC上,代入得解得线段所在直线的解析式为(3)因为小军的速度是120米/分,所以直线OD的解析式为令,解得所以距图书馆的距离为(米)【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论