




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省淮安市清江浦中学数学八上期末复习检测模拟试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.计算:的结果是()A. B.. C. D.2.如图,在中,分别是边上的点,若≌≌,则的度数为()A. B. C. D.3.若(x+m)(x2-3x+n)的展开式中不含x2和x项,则m,n的值分别为()A.m=3,n=1 B.m=3,n=-9 C.m=3,n=9 D.m=-3,n=94.若点关于原点的对称点是,则m+n的值是()A.1 B.-1 C.3 D.-35.下列图形是中心对称图形的是()A. B.C. D.6.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案()A.2B.3C.4D.57.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于…()A.2cm2 B.1cm2 C.cm2 D.cm28.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,159.要使在实数范围内有意义,应满足的条件是()A. B. C. D.10.在以下四个图案中,是轴对称图形的是()A. B. C. D.11.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2 B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2 D.(2x﹣y)(2x+y)=2x2﹣y212.已知点到轴的距离为,到轴距离为,且在第二象限内,则点的坐标为()A. B. C. D.不能确定二、填空题(每题4分,共24分)13.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.14.当x_______时,分式无意义,当x=_________时,分式的值是0.15.化简结果是_______.16.一个等腰三角形的两边长分别为5或6,则这个等腰三角形的周长是.17.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为____.18.方程的根是______.三、解答题(共78分)19.(8分)如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,D与G重合.若长方形的长BC为8,宽AB为4,求:(1)CF的长;(2)求三角形GED的面积.20.(8分)已知,在平行四边形ABCD中,BD=BC,E为AD边的中点,连接BE;(1)如图1,若AD⊥BD,,求平行四边形ABCD的面积;(2)如图2,连接AC,将△ABC沿BC翻折得到△FBC,延长EB与FC交于点G,求证:∠BGC=∠ADB.21.(8分)如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.22.(10分)如图,△ABC中,AB=13cm,BC=10cm,AD是BC的中线,且AD=12cm.(1)求AC的长;(2)求△ABC的面积.23.(10分)如图①所示是一个长为,宽为的长方形,沿图中虚线用剪刀均分成相等个小长方形.然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①;方法②;(3)观察图②,写出,,这三个代数式之间的等量关系:;(4)根据(3)题中的等量关系,解决如下问题:若,,求的值?24.(10分)如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为.(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知为优三角形,,,,①如图1,若,,,求的值.②如图2,若,求优比的取值范围.(3)已知是优三角形,且,,求的面积.25.(12分)如图,已知为等边三角形,为上一点,为等边三角形.(1)求证:;(2)与能否互相垂直?若能互相垂直,指出点在上的位置,并给予证明;若与不能垂直,请说明理由.26.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据分式的运算法则即可求出答案.【详解】解:原式===故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.2、D【分析】根据全等三角形的性质求得∠BDE=∠CDE=90°,∠AEB=∠BED=∠CED=60°,即可得到答案.【详解】∵≌,∴∠BDE=∠CDE,∵∠BDE+∠CDE=180°,∴∠BDE=∠CDE=90°,∵≌≌,∴∠AEB=∠BED=∠CED,∵∠AEB+∠BED+∠CED=180°,∴∠AEB=∠BED=∠CED=60°,∴∠C=90°-∠CED=30°,故选:D.【点睛】此题考查了全等三角形的性质:全等三角形的对应角相等,以及平角的性质.3、C【解析】根据多项式与多项式的乘法法则展开后,将含x2与x的进行合并同类项,然后令其系数为0即可.【详解】原式=x3-3x2+nx+mx2-3mx+mn=x3-3x2+mx2+nx-3mx+mn=x3+(m-3)x2+(n-3m)x+mn∵(x+m)(x2-3x+n)的展开式中不含x2和x项∴m-3=0,n-3m=0∴m=3,n=9故选C.【点睛】本题考查多项式乘以多项式的运算法则,解题的关键是先将原式展开,然后将含x2与x的进行合并同类项,然后令其系数为0即可.4、B【解析】根据关于原点对称的点的坐标特点;两个点关于原点对称时,它们的坐标符号相反,可得m、n的值,进而可算出m+n的值.【详解】∵点P1(m,-1)关于原点的对称点是P2(2,n),∴m=-2,n=1,∴m+n=-2+1=-1,故选B.【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.5、B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.6、A【解析】解:设购买单价为8元的盆栽x盆,购买单价为10元的盆栽y盆,根据题意可得:8x+10y=100,当x=10,y=2,当x=5,y=6,当x=0,y=10(不合题意,舍去).故符合题意的有2种,故选A.点睛:此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.7、B【分析】根据三角形的中线将三角形面积平分这一结论解答即可.【详解】∵在△ABC中,点D是BC的中点,∴=2cm2,∵在△ABD和△ACD中,点E是AD的中点,∴=1cm2,=1cm2,∴=2cm2,∵在△BEC中,点F是CE的中点,∴=1cm2,即S阴影=1cm2故选:B.【点睛】本题考查三角形的中线与三角形面积的关系,熟知三角形的中线将三角形面积平分这一结论是解答的关键.8、D【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.9、C【分析】根据二次根式的被开方数大于等于0列式求解即可.【详解】解:根据题意得,x-1≥0,
解得x≥1.
故选:C.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.10、A【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【详解】A、是轴对称图形,故本选项正确;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11、C【分析】根据完全平方公式和平方差公式求出每个式子的结果,再判断即可.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选C.【点睛】本题考查了完全平方公式和平方差公式的应用,注意:完全平方公式:,平方差公式:(a+b)(a-b)=a-b.12、A【分析】根据坐标的表示方法由点到x轴的距离为3,到y轴的距离为2,且它在第二象限内即可得到点的坐标为.【详解】解:∵点到x轴的距离为3,到y轴的距离为2,且它在第二象限内,
∴点的坐标为.
故答案为.【点睛】本题考查了点的坐标:在直角坐标系中,过一点分别作x轴和y轴的垂线,用垂足在x轴上的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.二、填空题(每题4分,共24分)13、30【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为30°.14、x=-2x=2【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得出x的值.【详解】分式无意义,即x+2=0,∴x=-2,分式的值是0,∴可得4−x=0,x+2≠0,解得:x=2.故答案为x=-2,x=2.【点睛】此题考查分式的值为零的条件和无意义的情况,解题关键在于掌握其定义.15、【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.16、16或1.【解析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:(1)当等腰三角形的腰为5,底为6时,周长为5+5+6=16;(2)当等腰三角形的腰为6,底为5时,周长为5+6+6=1.∴这个等腰三角形的周长是16或1.17、1cm【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==1;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN==2.∵1<2∴蚂蚁沿长方体表面爬到米粒处的最短距离为1.故答案为1cm【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.18、,【分析】直接开方求解即可.【详解】解:∵∴∴,故答案为:,.【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种方法是解题的关键.三、解答题(共78分)19、(1)5(2)【分析】(1)设CF=,则BF=,在Rt△ABF中,利用勾股定理构造方程,解方程即可求解;(2)利用折叠的性质结合平行线的性质得到∠AEF=∠EFC=∠EFA,求得AE和DE的长,过G点作GM⊥AD于M,根据三角形面积不变性,得到AGGE=AEGM,求出GM的长,根据三角形面积公式计算即可.【详解】(1)设CF=,则BF=,
在Rt△ABF中,,
∴,
解得:,
∴CF=5;(2)根据折叠的性质知:∠EFC=∠EFA,AF=CF=5,AG=CD=4,DE=GE,∠AGE=∠C=90,∵四边形ABCD是长方形,∴AD∥BC,AD=BC=8,
∴∠AEF=∠EFC,∴∠AEF=∠EFC=∠EFA,
∴AE=AF=5,
∴DE=AD-AE=8-5=3,过G点作GM⊥AD于M,
则AGGE=AEGM,∵AG=4,AE=5,GE=DE=3,∴GM=,∴S△GED=DEGM=.【点睛】本题主要考查了折叠的性质、勾股定理以及三角形面积不变性,灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.20、(1)4;(2)证明见解析.【分析】(1)先推出∠ADB=90°,设AE=DE=a,则BD=AD=2a,根据勾股定理得出a2+4a2=5,解出a=1或﹣1(舍弃),可得AD=DB=2,即可求出S平行四边形ABCD;(2)延长BE到M,使得EM=BE,连接AM,先证明四边形ABDM是平行四边形,然后证明△BDM≌△CBF,得出∠DBM=∠BCF,根据AD∥BC,得出∠GBC=∠BED,根据∠BGC+∠GCB+∠GBC=180°,∠ADB+∠EBD+∠BED=180°,即可证明∠BGC=∠ADB.【详解】(1)解:∵四边形ABCD是平行四边形,∴AD=BC,∵BD=BC∴DA=DB,∵AD⊥BD,∴∠ADB=90°,设AE=DE=a,则BD=AD=2a,∵BE=,∴a2+4a2=5,∴a=1或﹣1(舍弃),∴AD=DB=2,∴S平行四边形ABCD=AD•BD=4;(2)证明:延长BE到M,使得EM=BE,连接AM,∵AE=DE,EM=EB,∴四边形ABDM是平行四边形,∴DM=AB,由翻折的性质可知:BA=BF,∠ABC=∠CBF,∴DM=BF,∵CD∥AB,∴∠ABC+∠DCB=180°,∴∠CBF+∠DCB=180°,∵BD=BC,∴∠DCB=∠CDB,∵∠BDM+∠CDB=180°,∴∠BDM=∠CBF,∴△BDM≌△CBF(SAS),∴∠DBM=∠BCF,∵AD∥BC,∴∠GBC=∠BED,∵∠BGC+∠GCB+∠GBC=180°,∠ADB+∠EBD+∠BED=180°,∴∠BGC=∠ADB.【点睛】本题考查了求平行四边形的面积,平行四边形的判定和性质,全等三角形的判定和性质,翻折的性质,掌握这些知识点灵活运用是解题关键.21、8cm【解析】试题分析:先根据BC与CD的长度之和为34cm,可设BC=x,则CD=(34-x),根据勾股定理可得:AC2=AB2+BC2=62+x2,△ACD是以DC为斜边的直角三角形,AD=24cm,根据勾股定理可得:AC2=CD2-AD2=(34-x)2-242,∴62+x2=(34-x)2-242,解方程即可求解.试题解析:∵BC与CD的长度之和为34cm,∴设BC=xcm,则CD=(34﹣x)cm.∵在△ABC中,∠ABC=90°,AB=6cm,∴AC2=AB2+BC2=62+x2.∵△ACD是以DC为斜边的直角三角形,AD=24cm,∴AC2=CD2﹣AD2=(34﹣x)2﹣242,∴62+x2=(34﹣x)2﹣242,解得x=8,即BC=8cm.22、(1)AC=13cm;(1)2cm1.【分析】(1)根据已知及勾股定理的逆定理可得△ABD,△ADC是直角三角形,从而不难求得AC的长.(1)先根据三线合一可知:AD是高,由三角形面积公式即可得到结论.【详解】(1)∵D是BC的中点,BC=10cm,∴DC=BD=5cm.∵BD1+AD1=144+15=169,AB1=169,∴BD1+AD1=AB1,∴△ABD是直角三角形,且∠ADB=90°,∴△ADC也是直角三角形,且AC是斜边,∴AC1=AD1+DC1=AB1,∴AC=13(cm).(1)∵AB=AC=13,BD=CD,∴AD⊥BC,∴S△ABC=BC•AD=×10×11=2.答:△ABC的面积是2cm1.【点睛】本题考查了等腰三角形的性质、勾股定理及勾股定理的逆定理的应用,解题的关键是得出中线AD是BC上的高线.23、(1)m﹣n;(2)(m﹣n)2;(m+n)2﹣4mn;(3)(m﹣n)2=(m+n)2﹣4mn;(4)1.【分析】(1)平均分成后,每个小长方形的长为m,宽为n.由图可知阴影正方形的边长=小长方形的长-宽;(2)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(3)根据(2)中表示的结果可求解;(4)利用(a-b)2=(a+b)2-4ab可求解.【详解】解:(1)图②中的阴影部分的正方形的边长等于m﹣n;故答案为:m﹣n;(2)图②中阴影部分的面积:(m﹣n)2;图②中阴影部分的面积:(m+n)2﹣4mn;故答案为:(m﹣n)2;(m+n)2﹣4mn;(3)根据图②,可得(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为:(m﹣n)2=(m+n)2﹣4mn;(4)∵a﹣b=6,ab=5,∴(a+b)2=(a﹣b)2+4ab=62+4×5=36+20=1.【点睛】本题考查了完全平方那个公式的几何背景,解决问题的关键是读懂题意,找到所求的量的等量关系.24、(1)该命题是真命题,理由见解析;(2)①a的值为;②k的取值范围为;(3)的面积为或.【分析】(1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c的值,再根据优三角形的定义列出的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设,先利用直角三角形的性质、勾股定理求出AC、AB的长及面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x的值,即可得出的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a,恰好是第三边a的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①根据优三角形的定义,分以下三种情况:当时,,整理得,此方程没有实数根当时,,解得当时,,解得,不符题意,舍去综上,a的值为;②由题意得:均为正数根据优三角形的定义,分以下三种情况:()当时,则由三角形的三边关系定理得则,解得,即故此时k的取值范围为当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高考语文第二轮专题复习强化训练:语言文字运用(附答案)二
- 中班健康远离噪音
- 胎儿胼胝体超声评估体系
- 教师学习培训结业学员汇报
- 右肩胛骨骨折护理查房
- 新人入职培训规章制度
- 护理班级总结
- 沟通协调能力培训
- 值日班长培训
- 子宫切除术后疼痛护理
- 2025西山煤电井下岗位高校毕业生招聘500人(山西)笔试参考题库附带答案详解
- 排污许可证申请流程
- 药具培训培训试题及答案
- 重庆市大渡口区2023-2024学年四年级下学期数学期末测试卷(含答案)
- 2025年高考全国一卷写作范文4篇
- 坚持严格阵地管理制度
- T/BECC 002-2024智算中心技术要求和评估方法
- 2025年广西公需科目答案03
- 2025届江苏省徐州市名校七下数学期末达标检测试题含解析
- 2025年山东夏季高中学业水平合格考模拟生物试卷(含答案)
- 大连海事大学育鲲轮电机员培训课件详解
评论
0/150
提交评论