版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省长郡教育集团八年级数学第一学期期末达标检测模拟试题模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若是二次根式,则,应满足的条件是()A.,均为非负数 B.,同号C., D.2.如图,是的平分线,垂直平分交的延长线于点,若,则的度数为()A. B. C. D.3.如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A.3米 B.4米 C.5米 D.6米4.如图,已知△ABC中,点O是BC、AC的垂直平分线的交点,OB=5cm,AB=8cm,则△AOB的周长是()A.21cm B.18cm C.15cm D.13cm5.4的平方根是()A.2 B.16 C.±2 D.±6.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为().A.45°; B.64°; C.71°; D.80°.7.如图,ΔABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠C的度数为()A.30° B.36° C.45° D.72°8.如图,用尺规作已知角的平分线的理论依据是()A.SAS B.AAS C.SSS D.ASA9.若点关于轴对称的点为,则点关于轴对称的点的坐标为()A. B. C. D.10.下列各式计算正确的是()A.=-1 B.=±2 C.=±2 D.±=311.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的()A. B. C. D.12.下列表情中,是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.化简得.14.如图,已知点、分别是的边、上的两个动点,将沿翻折,翻折后点的对应点为点,连接测得,.则__________.15.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=3,P为AB上一动点,则PD的最小值为_____.16.因式分解=.17.如图,AB=AC,则数轴上点C所表示的数为__________.18.如图,△ABO是边长为4的等边三角形,则A点的坐标是_____.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.20.(8分)如图,三个顶点的坐标分别为,,.(1)画出关于轴对称的图形,并写出三个顶点的坐标;(2)在轴上作出一点,使的值最小,求出该最小值.(保留作图痕迹)21.(8分)如图,已知AB=DC,AC=BD,求证:∠B=∠C.22.(10分)化简并求值:,其中23.(10分)已知a,b,c满足=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.24.(10分)如图,在平面直角坐标系中,直线l过点M(1,0)且与y轴平行,△ABC的三个顶点的坐标分别为A(-2,5),B(-4,3),C(-1,1).(1)作出△ABC关于x轴对称;(2)作出△ABC关于直线l对称,并写出三个顶点的坐标.(3)若点P的坐标是(-m,0),其中m>0,点P关于直线l的对称点P1,求PP1的长.
25.(12分)两位同学将一个二次三项式进行因式分解时,一名同学因为看错了一次项系数而分解成:,另一位同学因为看错了常数项而分解成了.请求出原多项式,并将它因式分解.26.如图,已知,在线段上,且,,,求证:.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据二次根式有意义的条件解答即可.【详解】解:∵是二次根式,∴,故选D.【点睛】本题考查了二次根式的定义,熟练掌握二次根式成立的条件是解答本题的关键,形如的式子叫二次根式.2、C【分析】由线段的垂直平分线性质可得AF=FD,根据等边对等角得到∠FAD=∠FDA,由角平分线的性质和外角性质可得结论.【详解】∵EF垂直平分AD,∴AF=FD,∴∠FAD=∠FDA,∴∠FAC+∠CAD=∠B+∠DAB.∵AD是∠BAC的平分线,∴∠CAD=∠DAB,∴∠FAC=∠B=65°.故选:C.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,三角形外角性质,灵活运用这些性质是解答本题的关键.3、C【解析】解:由题意得,路径一:;路径二:;路径三:为最短路径,故选C.4、B【分析】利用垂直平分线的性质定理,即垂直平分线上的点到线段两端的距离相等,通过等量代换可得.【详解】解:连接OC,∵点O在线段BC和AC的垂直平分线上,∴OB=OC,OA=OC∴OA=OB=5cm,∴的周长=OA+OB+AB=18(cm),故选:B.【点睛】本题考查线段的垂直平分线性质,掌握垂直平分线的性质定理为本题的关键.5、C【分析】根据平方根的概念:如果一个数x的平方等于a,即,那么这个数x叫做a的平方根,即可得出答案.【详解】,∴4的平方根是,故选:C.【点睛】本题主要考查平方根的概念,掌握平方根的概念是解题的关键.6、C【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【详解】由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:C.【点睛】考查三角形内角和定理以及折叠的性质,掌握三角形的内角和定理是解题的关键.7、D【解析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠C的度数.【详解】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180°-x2可得2x=180°-x2解得:x=36°,则∠C=故选:D.【点睛】此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.8、C【解析】由画法得OM=ON,NC=MC,又因为OC=OC,所以△OCN≌△OCM(SSS),所以∠CON=∠COM,即OC平分∠AOB.故选C.9、C【分析】直接利用关于y轴对称点的性质得出a,b的值,进而利用关于x轴对称点的性质得出答案.【详解】解:∵点P(2a-1,3)关于y轴对称的点为Q(3,b),
∴2a-1=-3,b=3,
解得:a=-1,
故M(-1,3)关于x轴对称的点的坐标为:(-1,-3).
故选:C.【点睛】本题考查关于x轴、y轴对称点的性质,正确得出a,b的值是解题关键.10、A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1,=2,=2,±=±3,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.11、A【分析】根据轴对称图形的定义即可判断.【详解】A、是轴对称图形,符合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:A.【点睛】本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.12、B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选B.【点睛】考查了轴对称图形,关键是正确找出对称轴的位置.二、填空题(每题4分,共24分)13、.【解析】试题分析:原式=.考点:分式的化简.14、1【分析】连接CC'.根据折叠的性质可知:∠DCE=∠DC'E.根据三角形外角的性质得到∠ECC'+∠EC'C=∠AEC'=10°.在△BCC'中,根据三角形内角和定理即可得出结论.【详解】连接CC'.根据折叠的性质可知:∠DCE=∠DC'E.∵∠ECC'+∠EC'C=∠AEC'=10°,∴∠BC'D=180°-(∠C'BC+2∠DCE+∠ECC'+∠EC'C)=180°-(∠C'BC+2∠DCE+10°)=180°-(92°+10°)=1°.故答案为:1.【点睛】本题考查了折叠的性质、三角形外角的性质以及三角形内角和定理.连接CC'把∠AEC'转化为∠ECC'+∠EC'C的度数是解答本题的关键.15、3【解析】根据角平分线的作法可知,AD是∠BAC的平分线,再根据角平分线上的点到角的两边距离相等,即可求解.【详解】根据作图的过程可知,AD是∠BAC的平分线.根据角平分线上的点到角的两边距离相等,又因为点到直线的距离,垂线段最短可得PD最小=CD=3.故答案为:3.【点睛】本题考查的知识点是基本作图,解题关键是掌握角平分线的做法和线段垂直平分线的判定定理.16、.【详解】试题分析:原式=.故答案为.考点:提公因式法与公式法的综合运用.17、【解析】分析:根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.详解:由勾股定理得:AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故答案为﹣1.点睛:本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.18、(﹣2,2)【分析】过点A作AC⊥OB于点C,根据△AOB是等边三角形,OB=4可得出OC=BC=2,∠OAC=∠OAB=30°.在Rt△AOC中,根据∠OAC=30°,OA=4可得出AC及OC的长,进而得出A点坐标.【详解】过点A作AC⊥OB于点C,∵△AOB是等边三角形,OB=4,∴OC=BC=2,∠OAC=∠OAB=30°,在Rt△AOC中,∵∠OAC=30°,OA=4,∴OC=2,AC=OA•cos30°=4×=2∵点A在第三象限,∴A(﹣2,2).故答案为:(﹣2,2).【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.三、解答题(共78分)19、(1)65°;(2)25°.【详解】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.20、(1)见解析,;(2)见解析,.【分析】(1)先根据轴对称的定义画出点,再顺次连接即可得,根据点坐标关于x轴对称的变化规律即可得点的坐标;(2)根据轴对称的性质、两点之间线段最短可得连接与x轴的交点P即为所求,最小值即为的长,由两点之间的距离公式即可得.【详解】(1)先根据轴对称的定义画出点,再顺次连接即可得,如图所示:点坐标关于x轴对称的变化规律:横坐标不变、纵坐标变为相反数则;(2)由轴对称的性质得:则由两点之间线段最短得:连接与x轴的交点P即为所求,最小值即为的长由两点之间的距离公式得:.【点睛】本题考查了画轴对称图形与轴对称的性质、两点之间线段最短等知识点,熟记轴对称图形与性质是解题关键.21、证明见解析.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【详解】连结AD在△BAD和△CDA中∴△BAD≌△CDA(SSS)∴∠B=∠C(全等三角形对应角相等).【点睛】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、;12【分析】先利用分式的基本性质化简分式,然后将代入即可得出答案.【详解】原式=当时,原式=【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.23、(1)a=8,b=15,c=17;(2)能,2【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a、b、c的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a,b,c满足=|c﹣17|+b2﹣30b+225,∴,∴a﹣8=0,b﹣15=0,c﹣17=0,∴a=8,b=15,c=17;(2)能.∵由(1)知a=8,b=15,c=17,∴82+152=1.∴a2+c2=b2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=×8×15=2.【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.24、(1)答案见解析;(2)答案见解析,点A2(4,5),点B2(6,3),点C2(3,1);(3)PP1=2+2m【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;
(2)分别作出点A、B、C关于直线l对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑脚手架分包合同样本
- 标准格式定点采购合同
- 批量方木采购合同
- 儿童演出安全保障服务合同
- 房屋租赁合同违约处理
- 企业小额贷款合同样本
- 救灾帐篷采购合同书
- 企业安全外包合同格式
- 围墙建设劳务分包合同范本
- 终止材料合同的终止条件
- 【MOOC】信号与系统-南京邮电大学 中国大学慕课MOOC答案
- 大学美育(同济大学版)学习通超星期末考试答案章节答案2024年
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 10000中国普通人名大全
- 戴炜栋英语语言学概论Chapter 1
- 2020年广东省中考数学试卷
- 广东省义务教育阶段学生学籍卡
- 小区会所经营方案(开业投资分析)
- 加气混凝土砌块施工方法
- 下肢动脉血栓相关知识
- 销售冠军团队销售职场培训动态PPT
评论
0/150
提交评论