版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省德惠市2025届八年级数学第一学期期末统考试题题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.BC是△ABC的高 B.AC是△ABE的高C.DE是△ABE的高 D.AD是△ACD的高2.已知A、B两个港口之间的距离为100千米,水流的速度为b千米/时,一艘轮船在静水中的速度为a千米/时,则轮船往返两个港口之间一次需要的时间是()A.+ B.C.+ D.﹣3.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=8米,OB=6米,A、B间的距离不可能是()A.12米 B.10米 C.15米 D.8米4.点的位置在A.第一象限 B.第二象限 C.第三象限 D.第四象限5.有大小不同的两个正方形按图、图的方式摆放.若图中阴影部分的面积,图中阴影部分的面积是,则大正方形的边长是()A. B. C. D.6.化简等于(
)A. B. C.﹣ D.﹣7.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm8.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1 B.O2 C.O3 D.O49.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90° C.BD=AC D.∠B=45°10.在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想 C.模型思想 D.特殊到一般二、填空题(每小题3分,共24分)11.若分式方程有增根,则的值为__________.12.如图所示,两条直线l1,l2的交点坐标可以看作方程组_____的解.13.如图,长方体的底面边长分别为3cm和3cm,高为5cm,若一只蚂蚁从A点开始经过四个侧面爬行一圈到达B点,则蚂蚁爬行的最短路径长为_____cm.14.在中,,,边上的高为,则的面积为______.15.如图,在△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC=________.16.在如图所示的“北京2008年奥运会开幕小型张”中,邮票的形状是一个多边形.这个多边形的内角和等于__________°.17.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要____________元钱.18.若关于的方程的解为正数,则的取值范围是_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线y=﹣x+m过点A(5,—2)且分别与x轴、y轴交于点B、C,过点A画AD//x轴,交y轴于点D.(1)求点B、C的坐标;(2)在线段AD上存在点P,使BP+CP最小,求点P的坐标.20.(6分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与直线交于点,点是轴上的一个动点,设.(1)若的值最小,求的值;(2)若直线将分割成两个等腰三角形,请求出的值,并说明理由.21.(6分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.22.(8分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.23.(8分)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.24.(8分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上。在建立平面直角坐标系后,点B的坐标为(-1,2).(1)把△ABC向下平移8个单位后得到对应的△,画出△,并写出坐标;(2)以原点O为对称中心,画出与△关于原点O对称的△,并写出点的坐标.25.(10分)(1)问题:如图在中,,,为边上一点(不与点,重合),连接,过点作,并满足,连接.则线段和线段的数量关系是_______,位置关系是_______.(2)探索:如图,当点为边上一点(不与点,重合),与均为等腰直角三角形,,,.试探索线段,,之间满足的等量关系,并证明你的结论;(3)拓展:如图,在四边形中,,若,,请直接写出线段的长.26.(10分)要在某河道建一座水泵站P,分别向河的同一侧甲村A和乙村B送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图),两村的坐标分别为A(1,-2),B(9,-6).(1)若要求水泵站P距离A村最近,则P的坐标为____________;(2)若从节约经费考虑,水泵站P建在距离大桥O多远的地方可使所用输水管最短?(3)若水泵站P建在距离大桥O多远的地方,可使它到甲乙两村的距离相等?
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形的高的定义判断即可.【详解】解:观察图象可知:BC是△ABC的高,AC是△ABE的高,AD是△ACD的高,DE是△BCD、△BDE、△CDE的高故A,B,D正确,C错误,故选:C.【点睛】本题考查三角形的角平分线,中线,高等知识,记住从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高是解决问题的关键.2、C【分析】直接根据题意得出顺水速度和逆水速度,进而可得出答案.【详解】由题意得:顺水速度为千米/时,逆水速度为千米/时则往返一次所需时间为故选:C.【点睛】本题考查了分式的实际应用,依据题意,正确得出顺水速度和逆水速度是解题关键.3、C【解析】试题分析:根据两边之和大于第三边,两边之差小于第三边,AB的长度在2和14之间,故选C.考点:三角形三边关系.A4、B【分析】根据各象限内点的坐标特点,再根据M点的坐标符号,即可得出答案.【详解】解:∵点M(-2019,2019),∴点M所在的象限是第二象限.故选B.【点睛】本题考查各象限内点的坐标的符号特征,解题的关键是熟记各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、B【分析】添加如解题中的辅助线,设大正方形的边长为a,小正方形的边长为b,然后根据图1中阴影部分的面积等于长方形的面积减去空白部分的面积和图2中阴影部分的面积等于底乘高除以2,列出方程,即可求出b、a的值.【详解】解:添加如图所示的辅助线设大正方形的边长为a,小正方形的边长为b由图1可知S阴影==20①由图2可知S阴影=②整理①,得:整理②,得∴∴b=4或-4(不符合实际,故舍去)把b=4代入②中,解得:a=7故选B.【点睛】此题考查的是根据阴影部分的面积求正方形的边长,掌握用整式表示出阴影部分的面积和方程思想是解决此题的关键.6、B【解析】试题分析:原式=====,故选B.考点:分式的加减法.7、C【解析】设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选C.8、A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.9、A【解析】试题分析:根据AB=AC,AD=AD,∠ADB=∠ADC=90°可得Rt△ABD和Rt△ACD全等.考点:三角形全等的判定10、B【详解】解:在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是转化思想,故选B.【点睛】本题考查解分式方程;最简公分母.二、填空题(每小题3分,共24分)11、【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到,然后将的值代入整式方程求出的值即可.【详解】∵∴∵若分式方程有增根∴∴故答案是:【点睛】本题考查了分式方程的增根,掌握增根的定义是解题的关键.12、【解析】先利用待定系数法求出直线l1的解析式y=x+1和直线l2的解析式y=x,然后根据一次函数与二元一次方程(组)的关系求解.【详解】设直线l1的解析式为y=kx+b,把(﹣2,0)、(2,2)代入得,解得,所以直线l1的解析式为y=x+1,设直线l2的解析式为y=mx,把(2,2)代入得2m=2,解得m=1,所以直线l2的解析式为y=x,所以两条直线l1,l2的交点坐标可以看作方程组的解.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数的交点坐标满足两个一次函数解析式所组成的方程组.也考查了待定系数法求一次函数解析式.13、1【分析】要求长方体中两点之间的最短路径,只需将长方体展开,然后利用两点之间线段最短及勾股定理求解即可.【详解】解:展开图如图所示:由题意,在中,AD=12cm,BD=5cm,蚂蚁爬行的最短路径长为:,故答案为1.【点睛】本题主要考查最短路径问题,熟练掌握求最短路径的方法是解题的关键.14、36或1【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A作AD⊥BC于点D,∵边上的高为8cm,∴AD=8cm,∵AC=17cm,由勾股定理得:cm,cm,如图1,点D在边BC上时,BC=BD+CD=6+15=21cm,∴△ABC的面积==×21×8=1cm2,如图2,点D在CB的延长线上时,BC=CD−BD=15−6=9cm,∴△ABC的面积==×9×8=36cm2,综上所述,△ABC的面积为36cm2或1cm2,故答案为:36或1.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.15、1【分析】根据垂直平分线的性质可得AF=BF=6,然后根据已知条件即可求出结论.【详解】解:∵EF是AB的垂直平分线,BF=6,∴AF=BF=6∵CF=2,∴AC=AF+CF=1.故答案为:1.【点睛】本题考查的是垂直平分线的性质,掌握垂直平分线的性质找到相等线段是解决此题的关键.16、720【分析】根据n边形的内角和公式为:(n-2)×180°,据此计算即可.【详解】解:由图可知该邮票是六边形,∴(6-2)×180°=720°.
故答案为:720.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解答本题的关键.17、612.【分析】先由勾股定理求出BC的长为12m,再用(AC+BC)乘以2乘以18即可得到答案【详解】如图,∵∠C=90,AB=13m,AC=5m,∴BC==12m,∴(元),故填:612.【点睛】此题考查勾股定理、平移的性质,题中求出地毯的总长度是解题的关键,地毯的长度由平移可等于楼梯的垂直高度和水平距离的和,进而求得地毯的面积.18、且【分析】根据分式方程的解法,解出x,再根据题意列出不等式求解即可.【详解】解:∵去分母得:解得:因为方程的解为正数,∴∴,又∵,∴∴,∴m的取值范围为:且故答案为:且.【点睛】本题考查了根据分式方程解的情况求分式方程中的参数,解题的关键是掌握分式方程的解法,并且注意分式方程增根的问题.三、解答题(共66分)19、(1),;(2).【分析】(1)代入点A(5,-2)求出m的值,分别代入y=0和x=0,求出点B、C的坐标(2)过C作直线AD对称点Q,求出直线BQ的方程式,代入y=-2,即可求出点P的坐标【详解】(1)∵y=-x+m过点A(5,-2),∴-2=-5+m,∴m=3∴y=-x+3令y=0,∴x=3,∴B(3,0)令x=0,∴y=3,∴C(0,3)(2)过C作直线AD对称点Q,可得Q(0,-7),连结BQ,交AD与点P,可得直线BQ:令y’=-2∴∴【点睛】本题考查了二元一次方程的求解以及动点问题,掌握作对称点的方法来使BP+CP最小是解题的关键20、(1);(2)5,理由见解析【分析】(1)先求出点A点B的坐标,根据轴对称最短确定出点M的位置,然后根据待定系数法求出直线AD的解析式,进而可求出m的值;(3)分三种情况讨论验证即可.【详解】解:(1)解得,∴A(4,2).把y=0代入得,解得x=5,∴B(5,0),取B关于y轴的对称点D(-5,0),连接AD,交y轴于点M,连接BM,则此时MB+MA=AD的值最小.设直线AD的解析式为y=kx+b,∵A(4,2),D(-5,0),∴,解得,∴,当x=0时,,∴m=;(2)当x=0时,,∴C(0,10),∵A(4,2),∴AC=,AO=.如图1,当MO=MA=m时,则CM=10-m,由10-m=m,得m=5,∴当m=5时,直线将分割成两个等腰三角形;如图2,当AM=AO=时,则My=2Ay=4,∴M(0,4),CM=6,此时CM≠AM,不合题意,舍去;如图3,当OM=AO=时,则CM=10-,AM=,∴CM≠AM,不合题意,舍去;综上可知,m=5时,直线将分割成两个等腰三角形.【点睛】本题考查了待定系数法求一次函数解析式,一次函数与坐标轴的交点,等腰三角形的性质,勾股定理以及分类讨论的数学思想.根据轴对称的性质确定出点M的位置是解(1)的关键,分类讨论是解(2)的关键.21、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,即加满油时,油量为70升.(2)设,把点,坐标分别代入得,,∴,当时,,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.22、(1)见解析;(2)∠BDF=18°.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.23、证明见解析【解析】试题分析:由CA平分∠BCD,AE⊥BC于E,AF⊥CD,可得AE=AF,再由HL判定Rt△AEB≌Rt△AFD,即可得出结论.试题解析:∵CA平分∠BCD,AE⊥BC,AF⊥CD,∴AE=AF.在Rt△ABE和Rt△ADF中,∵∴△ABE≌△ADF(HL).24、(1)画图见解析;A1(-5,-6);(2)画图见解析;B2(1,6).【分析】(1)根据网格结构找出点A、B、C向下平移8个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1坐标;(2)根据网格结构找出点A1、B1、C1关于原点O对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点B2坐标.【详解】(1)△A1B1C1如图所示,A1(﹣5,﹣6);(2)△A2B2C2如图所示,B2(1,6)【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.25、(1)=;⊥;(2)+=;(3)2【分析】(1)根据同角的余角相等得出∠BAD=∠CAE,可证△ADB≌△AEC,由全等三角形的性质即可得出结果;(2)连结CE,同(1)的方法证得△ADB≌△AEC,根据全等三角形的性质转换角度,可得△DCE为直角三角形,即可得,,之间满足的等量关系;(3)在AD上方作EA⊥AD,连结DE,同(2)的方法证得△DCE为直角三角形,由已知和勾股定理求得DE的长,再根据等腰直角三角形的性质和勾股定理即可求得AD的长.【详解】解:=,⊥,理由如下:∵,,∴∠ABC=∠ACB=45°,∵,∴,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,故答案为:=;⊥.(2)+=,证明如下:如图,连结CE,∵与均为等腰直角三角形,∴∠ABC=∠ACB=45°,,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,则△DCE为直角三角形,∴+=,∴+=;(3)如图,作EA⊥AD,使得AE=AD,连结DE、CE,∵,∴,AB=AC,∵,AE=AD,∴,,∴,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合作协议范本-短视频创作分成计划
- 二零二五版口罩生产安全培训与应急演练合同3篇
- 2025年分期保养维修服务协议
- 2025年业主消防设备检测协议
- 2025年咖啡烘焙服务委托合同
- 2025年培训师资质协议
- 二零二五版建筑废料出售及环保处理合作协议3篇
- 2025年度旅行社与旅游巴士租赁合同范本3篇
- 二零二五版承包工地食堂食品安全管理咨询合同模板2篇
- 二零二五年教育培训机构合作协议教育培训3篇
- 教师招聘(教育理论基础)考试题库(含答案)
- 2024年秋季学期学校办公室工作总结
- 上海市12校2025届高三第一次模拟考试英语试卷含解析
- 三年级数学(上)计算题专项练习附答案集锦
- 长亭送别完整版本
- 《铁路轨道维护》课件-更换道岔尖轨作业
- 股份代持协议书简版wps
- 职业学校视频监控存储系统解决方案
- 《销售心理学培训》课件
- 2024年安徽省公务员录用考试《行测》真题及解析
- 你比我猜题库课件
评论
0/150
提交评论