版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼和浩特市2025届数学八年级第一学期期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点关于轴的对称点坐标为()A. B. C. D.2.如图,已知的六个元素,其中、、表示三角形三边的长,则下面甲、乙、丙、丁四个三角形中与不一定相似的图形是()A.甲 B.乙 C.丙 D.丁3.下列实数中,是有理数的是()A. B. C. D.4.下列计算正确的是()A.3x﹣2x=1 B.a﹣(b﹣c+d)=a+b+c﹣dC.(﹣a2)2=﹣a4 D.﹣x•x2•x4=﹣x75.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.66.王珊珊同学在学校阅览室借了一本书,共页,管理员要求在两周内归还,当她读了这本书的一半时,发现每天要多读页才能在借期内读完,问前一半她每天读多少页?如果设前一半每天读页,则下列方程正确的是()A. B. C. D.7.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.1928.已知方程组,则的值是()A.﹣2 B.2 C.﹣4 D.49.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°10.下列各数中是无理数的是()A. B.0C. D.0.1616616661…(相邻两个1间依次增加1个6)二、填空题(每小题3分,共24分)11.若与是同类项,则的立方根是.12.如果分式的值为零,那么x等于____________13.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.14.若的3倍与2的差是负数,则可列出不等式______.15.如图所示的坐标系中,单位长度为1,点B的坐标为(1,3),四边形ABCD的各个顶点都在格点上,点P也在格点上,的面积与四边形ABCD的面积相等,写出所有点P的坐标_____________.(不超出格子的范围)16.因式分解:a3-a=______.17.已知:如图,中,,外角,则____________________18.计算:23×20.2+77×20.2=______.三、解答题(共66分)19.(10分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)20.(6分)计算+++21.(6分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,求∠BDA的度数为多少时,△ADE是等腰三角形.22.(8分)今年清明节前后某茶叶销售商在青山茶厂先后购进两批茶叶.第一批茶叶进货用了5.4万元,进货单价为a元/千克.购回后该销售商将茶叶分类包装出售,把其中300千克精装品以进货单件的两倍出售;余下的简装品以150元/千克的价格出售,全部卖出.第二批进货用了5万元,这一次的进货单价每千克比第一批少了20元.购回分类包装后精装品占总质量的一半,以200元/千克的单价出售;余下的简装品在这批进货单价的基础上每千克加价40元后全部卖出.若其它成本不计,第二批茶叶获得的毛利润是3.5万元.(1)用含a的代数式表示第一批茶叶的毛利润;(2)求第一批茶叶中精装品每千克售价.(总售价-总进价=毛利润)23.(8分)先化简代数式,再从中选一个恰当的整数作为的值代入求值.24.(8分)先化简:,然后在-3,-1,1,3中选择一个合适的数,作为的值代入求值.25.(10分)如图,某小区有一块长为(3a+b)米,宽为(a+3b)米的长方形空地,计划在中间边长(a+b)米的正方形空白处修建一座文化亭,左边空白部分是长为a米,宽为米的长方形小路,剩余阴影部分用来绿化.(1)请用含a、b的代数式表示绿化面积S(结果需化简);(2)当a=30,b=20时,求绿化面积S.26.(10分)阅读下面材料,完成(1)-(3)题:数学课上,老师出示了这样一道题:如图1,点是正边上一点以为边做正,连接.探究线段与的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段平分.”......老师:“保留原题条件,连接,是的延长线上一点,(如图2),如果,可以求出、、三条线段之间的数量关系.”(1)求证;(2)求证线段平分;(3)探究、、三条线段之间的数量关系,并加以证明.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据关于轴对称的点的特点:横坐标相同,纵坐标互为相反数即可得出答案.【详解】根据关于轴对称的点的特点:横坐标相同,纵坐标互为相反数,可知点关于轴的对称点坐标为.故选:B.【点睛】本题主要考查关于轴对称的点的特点,掌握关于轴对称的点的特点是解题的关键.2、A【分析】根据相似三角形的判定方法对逐一进行判断.【详解】解
:A.满足两组边成比例夹角不一定相等,与不一定相似,故选项正确;
B.满足两组边成比例且夹角相等,与相似的图形相似,故选项错误;
C.满足两组角分别相等,与相似的图形相似,故选项错误;
D.满足两组角分别相等,与相似的图形相似,故选项错误
.
故选A.【点睛】本题考查了相似三角形的判定方法,关键是灵活运用这些判定解决问题.3、D【分析】根据有理数的定义即可得出答案.【详解】、、均为无理数,为有理数,故答案选择D.【点睛】本题考查的是有理数的定义,比较简单,整数和分数统称为有理数.4、D【分析】直接利用积的乘方运算法则以及去括号法则分别化简得出答案.【详解】解:A、3x﹣2x=x,故此选项错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故此选项错误;C、(﹣a2)2=a4,故此选项错误;D、﹣x•x2•x4=﹣x7,故此选项正确.故选:D.【点睛】本题考查了积的乘方运算法则以及去括号法则,正确掌握相关运算法则是解题关键.5、B【解析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.6、D【分析】设前一半每天读页,则后一半每天读(x+5)页,根据“书共240页,两周内归还”列出方程解答即可.【详解】设前一半每天读页,则后一半每天读(x+5)页,根据题意得:故选:D【点睛】本题考查的是分式方程的应用,能理解题意并分析出题目中的数量关系是关键.7、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【点睛】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.8、C【分析】两式相减,得,所以,即.【详解】解:两式相减,得,∴,即,故选C.【点睛】本题考查了二元一次方程组,对原方程组进行变形是解题的关键9、A【分析】由于点C关于直线MN的对称点是B,所以当三点在同一直线上时,的值最小.【详解】由题意知,当B.
P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴【点睛】考查轴对称-最短路线问题,找出点C关于直线MN的对称点是B,根据两点之间,线段最短求解即可.10、D【分析】根据无理数的概念进行判断.【详解】A选项:是有理数;B选项:0是有理数;C选项:=8是有理数;D选项:.1616616661…(相邻两个1间依次增加1个6)是无限不循环小数,故是无理数.故选:D.【点睛】考查了无理数的定义,解题关键是抓住:无理数常见的三种类型①开不尽的方根;②特定结构的无限不循环小数;③含π的数.二、填空题(每小题3分,共24分)11、2.【解析】试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.12、-1【解析】根据分式的值为0,分子为0,分母不为0,由此可得且x-1≠0,解得x=-1.故答案为-1.13、.【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB,BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).14、【分析】根据题意即可列出不等式.【详解】根据题意得故答案为:.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.15、(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD的面积等于△ABC面积与△ACD面积之和即为2,同时矩形AEDC面积也为2,且E为AP1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵,又,∴,又E为AP1的中点,∴DE平分△ADP1的面积,且△AED面积为1,∴△ADP1面积为2,故P1点即为所求,且P1(4,4),同理C为DP3的中点,AC平分△ADP3面积,且△ACD面积为1,故△ADP3面积为2,故P3点即为所求,且P3(1,2),由两平行线之间同底的三角形面积相等可知,过P3作AD的平行线与网格的交点P2和P4也为所求,故P2(0,4),P4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.16、a(a-1)(a+1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).17、65°70°【分析】利用外角性质求出∠C,再利用邻补角定义求出∠ABC.【详解】∵∠ABD=∠A+∠C,,,∴∠C=∠ABD-∠A=65°,∵∠ABC+∠ABD=180,∴∠ABC=180-∠ABD=70°故答案为:65°,70°.【点睛】此题考查外角性质,邻补角定义,会看图找到各角度的关系,由此计算得出所求的角度是解题的关键.18、1【分析】先把20.2提取出来,再把其它的数相加,然后再进行计算即可.【详解】根据题意得:
=1.【点睛】本题考查了因式分解的应用,解题的关键是找出公因式,再进行提取,是一道基础题.三、解答题(共66分)19、点C到AB的距离约为14cm.【分析】通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.【详解】解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.在△ABC中,∵,,,∴,,∴,∴△ABC为直角三角形,即∠ACB=90°.……∵,∴,即,∴CE=14.4≈14.答:点C到AB的距离约为14cm.【点睛】本题的解题关键是掌握勾股定理的逆定理,能通过三角形面积反求对应的边长.20、11【分析】根据幂的乘方,零指数幂,负整数指数幂,绝对值的性质,进行计算即可.【详解】+(π++=4+1+3+3=11【点睛】此题考查幂的乘方,零指数幂,负整数指数幂,绝对值的性质,解题关键在于掌握运算法则.21、(1)30,110,小;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)∠BDA=80°或110°.【分析】(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数,由三角形内角和定理可判断∠BDA的变化;(2)当DC=2时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE两种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA的度数.【详解】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°,∴∠EDC=180°-∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°-∠BAD,∵点D从B向C的运动过程中,∠BAD逐渐变大,∴∠BDA逐渐变小,故答案为:小;(2)当DC=2时,△ABD≌△DCE.理由如下∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA);(3)若AD=DE时.∵AD=DE,∠ADE=40°,∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC,∴∠EDC=30°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时.∵AE=DE,∠ADE=40°,∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC,∴∠EDC=60°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形.【点睛】本题是三角形综合题,考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,灵活运用相关的性质定理、综合运用知识是解题的关键,注意分情况讨论思想的应用.22、(1)600a+-99000;(2)240元【分析】(1)用总销售额减去成本即可求出毛利润;(2)因为第一批进货单价为元/千克,则第二批的进货单价为()元/千克,根据第二批茶叶获得的毛利润是35000元,列方程求解.【详解】(1)由题意得,第一批茶叶的毛利润为:300×2a+150×(-300)-54000=600a+99000;(2)设第一批进货单价为a元/千克,由题意得,××200+××(20+40)50000=35000,解得:120,经检验:120是原分式方程的解,且符合题意.则售价为:.答:第一批茶叶中精装品每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课程设计平板搓丝机
- 进程控制系统课程设计
- 课程设计平面图的内容
- 初中地方特色课程设计
- 2024-2030年中国稳压器行业运营动态与应用前景预测报告
- 课程设计农村
- 2024-2030年中国炸鸡腌料行业消费状况及销售趋势预测研究报告
- 2024-2030年中国法式门智能冰箱行业消费状况与竞争趋势预测报告
- 2024-2030年中国核聚变能行业前景规划及投资策略建议研究报告
- 2024-2030年中国己二酸低聚物行业运行趋势与需求前景预测报告
- 班主任专业能力大赛情景答辩小学组真题及答案
- 消毒供应中心护理质量考核评价量分表(100分)
- 手术室值班交接班
- 2024年湖北农业发展集团有限公司招聘笔试冲刺题(带答案解析)
- 食品理化检验技术单选测试题(附答案)
- WST771-2015 工作场所职业病危害因素检测工作规范
- 新媒体写作课件
- 2024年安徽法院聘用制书记员招聘笔试参考题库附带答案详解
- JJG 633-2024 气体容积式流量计
- 光伏运维技能大赛考试题库及答案
- 仓库管理系统详细设计方案
评论
0/150
提交评论