2025届浙江省杭州市萧山区城北片数学八上期末达标测试试题含解析_第1页
2025届浙江省杭州市萧山区城北片数学八上期末达标测试试题含解析_第2页
2025届浙江省杭州市萧山区城北片数学八上期末达标测试试题含解析_第3页
2025届浙江省杭州市萧山区城北片数学八上期末达标测试试题含解析_第4页
2025届浙江省杭州市萧山区城北片数学八上期末达标测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省杭州市萧山区城北片数学八上期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A.﹣9 B.﹣3 C.3 D.﹣3或32.如图所示,∠1=∠2=150°,则∠3=()A.30° B.150° C.120° D.60°3.如图,在中,,垂足为,延长至,取,若的周长为12,则的周长是()A. B. C. D.4.在平面直角坐标系中,点在第()象限.A.一 B.二 C.三 D.四5.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.156.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A.0对 B.1对 C.2对 D.3对7.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为(

)A.﹣2

B.2

C.0

D.18.自从太原市实施“煤改气”“煤改电”清洁供暖改造工程以来,空气质量明显好转.下表是年月日太原市各空气质量监测点空气质量指数的统计结果:监测点尖草坪金胜巨轮南寨上兰村桃园坞城小店空气质量指数等级优优优优优优良优这一天空气质量指数的中位数是()A. B. C. D.9.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图像如图所示,由图中给出的信息可知,营销人员没有销售时的收入是()A.310元 B.300元 C.290元 D.280元10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,中,,,为线段上一动点(不与点,重合),连接,作,交线段于.以下四个结论:①;②当为中点时;③当时;④当为等腰三角形时.其中正确的结论是_________(把你认为正确结论的序号都填上)12.如图,在□中,过点,与的延长线交于,,,则□的周长为__________.13.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________14.如图,的为40°,剪去后得到一个四边形,则__________度.15.计算-(-3a2b3)2的结果是_______.16.某校七班有名学生,期中考试的数学平均成绩是分,七有名学生,期中考试的数学平均成绩是分,这两个班期中考试的数学平均成绩是______分.17.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于_____cm218.某种病毒近似于球体,它的半径约为0.00000000234米,用科学记数法表示为_____米.三、解答题(共66分)19.(10分)计算或因式分解:(1)计算:;(2)因式分解:;(3)计算:.20.(6分)如图1,已知点B(0,6),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.图1图2图3(1)求证:DE=BO;(2)如图2,当点D恰好落在BC上时.①求OC的长及点E的坐标;②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;③如图3,点M是线段BC上的动点(点B,C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.21.(6分)解分式方程:(1);(2)22.(8分)问题背景:如图1,在四边形ABCD中,∠ABC=90°,AB=CB=DB,DB⊥AC.①直接写出∠ADC的大小;②求证:AB1+BC1=AC1.迁移应用:如图1,在四边形ABCD中,∠BAD=60°,AB=BC=CD=DA=1,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE、CF.①求证:△CEF是等边三角形;②若∠BAF=45°,求BF的长.23.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.24.(8分)先化简再求值:(a+2﹣)•,其中a=.25.(10分)在平面直角坐标系中,横、纵坐标均为整数的点叫做整数点,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:点P从O点出发的时间可以到达的整坐标可以到达整数点的个数1秒(0,1),(1,0)22秒(0,2),(2,0),(1,1)33秒()()(2)当点P从点O出发10秒,可到达的整数点的个数是____________个;(3)当点P从O点出发____________秒时,可得到整数点(10,5).26.(10分)解方程组和计算(1)计算①②(2)解方程组①②

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.【详解】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【点睛】本题考查了一次函数图象上点点坐标特征及正比例函数的性质,较为简单,容易掌握.2、D【解析】由∠1,∠2的度数,利用邻补角互补可求出∠ABC,∠BAC的度数,再利用三角形的外角性质即可求出∠3的度数.【详解】解:∵∠1=∠2=150°,

∴∠ABC=∠BAC=180°-150°=30°,

∴∠3=∠ABC+∠BAC=60°.

故选:D.【点睛】本题考查了三角形的外角性质以及邻补角,牢记“三角形的一个外角等于和它不相邻的两个内角的和”是解题的关键.3、D【解析】根据等腰三角形的性质进行求解,得到各边长即可得出答案.【详解】∵中,∴是等边三角形∵∴,,,,∵∴∴∵的周长为12∴,,∴的周长是故答案为:D.【点睛】本题考查了三角形的周长问题,通过等腰三角形的性质求出各边长是解题的关键.4、B【分析】根据各象限内点的坐标特征解答.【详解】∵-2<0,3>0∴点P(−2,3)在第二象限故选B.【点睛】此题考查点的坐标,解题关键在于掌握各象限内点的坐标特征.5、C【解析】试题分析:要求出第三束气球的价格,根据第一、二束气球的价格列出方程组,应用整体思想求值:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,两式相加,得,4x+4y=32,即2x+2y=1.故选C.6、C【分析】由“SAS”可证△ABE≌△ACE,可得∠B=∠C,由“AAS”可证△BDO≌△CEO,即可求解.【详解】解:∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACE(SAS)∴∠B=∠C,∵AB=AC,AD=AE,∴BD=CE,且∠B=∠C,∠BOD=∠COE,∴△BDO≌△CEO(AAS)∴全等的三角形共有2对,故选:C.【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.7、B【解析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.8、B【分析】根据中位数的定义即可求解.【详解】把各地的空气质量指数从小到大排列为:19,23,27,28,39,45,48,61,故中位数为=33.5,故选B.【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义.9、B【解析】试题分析:观察图象,我们可知当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,即可得到结果.由图象可知,当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,因此营销人员没有销售业绩时收入是800-500=1.故选B.考点:本题考查的是一次函数的应用点评:本题需仔细观察图象,从中找寻信息,并加以分析,从而解决问题.10、B【解析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.根据题意和图示分析可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y最大,当火车开始出来时y逐渐变小,故选B.二、填空题(每小题3分,共24分)11、①②③【分析】利用三角形外角的性质可判断①;利用等腰三角形三线合一的性质得到∠ADC=90,求得∠EDC=50,可判断②;利用三角形内角和定理求得∠DAC=70=∠DEA,证得DA=DE,可证得,可判断③;当为等腰三角形可分类讨论,可判断④.【详解】①∠ADC是的一个外角,∴∠ADC=∠B+∠BAD=40+∠BAD,又∠ADC=40+∠CDE,∴∠CDE=∠BAD,故①正确;②∵,为中点,∴,AD⊥BC,∴∠ADC=90,∴∠EDC=90,∴,∴DE⊥AC,故②正确;③当时由①得∠CDE=∠BAD,在中,∠DAC=,在中,∠AED=,∴DA=ED,在和中,,∴,∴,故③正确;④当AD=AE时,∠AED=∠ADE=40°,

∴∠AED=∠C=40°,则DE∥BC,不符合题意舍去;当AD=ED时,∠DAE=∠DEA,同③,;当AE=DE时,∠DAE=∠ADE=40°,

∴∠BAD,

∴当△ADE是等腰三角形时,

∴∠BAD的度数为30°或60°,故④错误;综上,①②③正确,故答案为:①②③【点睛】此题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,三角形的内角和公式,掌握全等三角形的判定定理和性质定理、灵活运用分类讨论思想是解题的关键.12、1【分析】根据平行四边形性质求出DC=AB,AD=BC,DC∥AB,根据平行线性质求出∠M=∠MDA,求出AM=AD,根据平行四边形周长等于2BM,即可求出答案.【详解】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,DC∥AB,∴∠NDC=∠M,∵∠NDC=∠MDA,∴∠M=∠MDA,∴AM=AD,∵,∴平行四边形周长为2(AB+AD)=2(AB+AM)=2BM=1故答案为:1.【点睛】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的能力,题目比较好,难度也适中.13、25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB==25cm;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm,在直角三角形ABC中,根据勾股定理得:∴AB=cm;∵25<5<5,∴自A至B在长方体表面的连线距离最短是25cm.故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.14、1;【分析】根据三角形内角和为180°,得出的度数,再根据四边形的内角和为360°,解得的度数.【详解】根据三角形内角和为180°,得出,再根据四边形的内角和为360°,解得故答案为1.【点睛】本题考查了多边形内角和的公式,利用多边形的内角和,去求其他角的度数.15、-9a4b6【分析】根据积的乘方和幂的乘方法则即可解答.【详解】解:【点睛】本题考查积的乘方和幂的乘方运算,熟练掌握其法则是解题的关键.16、73.8【分析】根据平均数的定义,算出两个班总分数的和,再除以总人数即可.【详解】解:七(1)班的总分=45×76=3420,七(2)班的总分=55×72=3960,∴两个班期中考试的数学平均成绩=(3420+3960)÷(45+55)=73.8.故答案为:73.8.【点睛】本题考查了平均数的定义,解题的关键是掌握平均数的求法.17、1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,,且,,即阴影部分的面积为.故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.18、2.34×11﹣2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.11111111234米=2.34×11﹣2米.故答案为:2.34×11﹣2.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×11﹣n,其中1≤|a|<11,n为由原数左边起第一个不为零的数字前面的1的个数所决定.三、解答题(共66分)19、(1)3;(2);(3)【分析】(1)根据立方根的定义、算术平方根的定义和绝对值的定义计算即可;(2)先根据多项式乘多项式法则去括号,然后利用完全平方公式因式分解即可;(3)根据幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则计算即可.【详解】解:(1)===3(2)===(3)====【点睛】此题考查的是实数的混合运算、因式分解和整式的乘除法,掌握立方根的定义、算术平方根的定义、绝对值的定义、多项式乘多项式法则、利用完全平方公式因式分解、幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则是解决此题的关键.20、(1)证明见解析;(2)①,;②存在;;③不会变化,MH+MG=1.【分析】(1)根据等边三角形的性质得到BC=CE,OC=CD,∠OCD=∠BCE=10°,求得∠OCB=∠DCE,根据全等三角形的性质即可得到结论;(2)①由点B(0,1),得到OB=1,根据全等三角形的性质得到∠CDE=∠BOC=90°,根据等边三角形的性质得到∠DEC=30°,求得CE=4,过E作EF⊥x轴于F,角三角形即可得到结论;②存在,如图d,当CE=CP=4时,当CE=PE,根据等腰三角形的性质即可得到结论;③不会变化,如图c,连接EM,根据三角形的面积公式即可得到结论.【详解】解:(1)证明:∵△ODC和△EBC都是等边三角形,∴OC=DC,BC=CE,∠OCD=∠BCE=10°.∴∠BCE+∠BCD=∠OCD+∠BCD,即∠ECD=∠BCO.∴△DEC≌△OBC(SAS).∴DE=BO.(2)①∵△ODC是等边三角形,∴∠OCB=10°.∵∠BOC=90°,∴∠OBC=30°.设OC=x,则BC=2x,∴x2+12=(2x)2.解得x=2.∴OC=2,BC=4.∵△EBC是等边三角形,∴BE=BC=4.又∵∠OBE=∠OBC+∠CBE=90°,∴E(4,1).②若点P在C点左侧,则CP=4,OP=4-2=2,点P的坐标为(-2,0);若点P在C点右侧,则OP=2+4=1,点P的坐标为(1,0).③不会变化,MH+MG=1【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定,三角形面积的计算,熟练掌握等边三角形的性质是解题的关键.21、(1)x=2;(2)x=2【解析】试题分析:(1)观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;

(2)观察可得最简公分母是x(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:(1)方程两边乘x+1,得2x-x-1=1.解得x=2.经检验,x=2是原方程的解.(2)方程两边乘x(x-1),得x+4=3x.解得x=2.经检验,x=2是原方程的解.22、问题背景①∠ADC=135°;②证明见解析;迁移应用:①证明见解析;②BF=.【分析】问题背景①利用等腰三角形的性质以及三角形的内角和定理即可解决问题.②利用面积法解决问题即可.迁移应用①如图1中,连BD,BE,DE.证明EF=FC,∠CEF=60即可解决问题.②过B作BH⊥AE于H,设BH=AH=EH=x,利用面积法求解即可.【详解】问题背景①∵BC=BD=BA,BD⊥AC,∴∠CBD=∠ABD∠ABC=45°,∴∠BCD=∠BDC(180°﹣45°)=67.5°,∠BDA=∠BAD=67.5°,∴∠ADC=∠BDC+∠BDA=135°.②如图1中,设AB=BC=a,∴S△ABC∵BE⊥AC,∠BCA=∠BAC=45°,∴BE=AE=CE∵S△ABC,∴a1AC11a1=AC1,∴AB1+BC1=AC1迁移应用:①证明:如图1中,连BD,BE,DE.∵AD=AB=BC=CD=1,∴△ABD≌△BCD(SSS),∴∠BAD=∠BCD∵∠BAD=60°,∴△ABD和△CBD为等边三角形∵C沿BM对称得E点,∴BM垂直平分CE,∴设∠CBF=∠EBF=α,EF=CF,∴∠BEC=90°﹣α,∴∠ABE=110°﹣1α,∴∠BAE=∠BEA=30°+α,∴∠AEC=110°,∴∠CEF=60°,∴△CEF为等边三角形②解:易知∠BFH=30°当∠BAF=45°时,△ABE为等腰直角三角形过B作BH⊥AE于H,∴设BH=AH=EH=x,∴S△ABE⋅1x⋅x=x1S△ABE⋅1x⋅x=1,∴x1=1,即x∵BF=1BH,∴BF=1.【点睛】本题属于四边形综合题,考查了解直角三角形等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会利用面积法解决问题,属于中考常考题型.23、(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(3)因为B的坐标是(3,3),所以B关于y轴对称的点的坐标是(-3,3)(3)将A向左移三个格得到A3,O向左平移三个单位得到O3,B向左平移三个单位得到B3,再连线得到△A3O3B3.(3)因为A的坐标是(3,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A3是(-3,3).考点:3.关于y轴对称点坐标规律3.图形平移后点的坐标规律24、﹣2a﹣6,-1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,然后约分得到最简结果,再把a的值代入计算即可.【详解】解:(a+2﹣)•===﹣2a﹣6,当a=时,原式=﹣2a﹣6=﹣1.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解本题的关键.25、(1)填表见解析;(2)11个;(3)1【分析】(1)设到达的整坐标为(x,y),其中x>0,y>0,由题意可知,动点P由原点O运动到(x,y)的方式为:先向右走xcm(所需时间为x÷1=x秒),再向上走ycm(所需时间为y÷1=y秒),从而得出点P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论