版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡市名校数学八年级第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.252.﹣2的绝对值是()A.2 B. C. D.3.已知△ABC的三边为a,b,c,下列条件能判定△ABC为直角三角形的是()A. B.C. D.4.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为,较短的直角边为,且,则大正方形面积与小正方形面积之比为()A.25:9 B.25:1 C.4:3 D.16:95.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条 B.3条 C.5条 D.无数条6.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是()A. B. C.2 D.7.下列长度的三条线段,能构成直角三角形的是()A.8,9,10 B.1.5,5,2 C.6,8,10 D.20,21,328.已知,点在内部,点与点关于对称,点与点关于对称,则是()A.含30°角的直角三角形 B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形9.下列代数式中,属于分式的是()A.5x B. C. D.10.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A为()时,ED恰为AB的中垂线.A.15° B.20° C.30° D.25°二、填空题(每小题3分,共24分)11.春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A礼盒,10个B礼盒,10个C礼盒;乙套餐每袋装有5个A礼盒,7个B礼盒,6个C礼盒;丙套餐每袋装有7个A礼盒,8个B礼盒,9个C礼盒;丁套餐每袋装有3个A礼盒,4个B礼盒,4个C礼盒,若一个甲套餐售价1800元,利润率为,一个乙和一个丙套餐一共成本和为1830元,且一个A礼盒的利润率为,问一个丁套餐的利润率为______利润率12.用科学记数法表示:0.000002018=_____.13.已知点在轴上,则点的坐标为______.14.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________.15.试写出一组勾股数___________________.16.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=1.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.17.已知、满足方程组,则代数式______.18.如图,是的角平分线,,垂足为,且交线段于点,连结,若,设,则关于的函数表达式为_____________.三、解答题(共66分)19.(10分)解分式方程20.(6分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.21.(6分)甲、乙两地相距120千米,一辆大巴车从甲地出发,行驶1小时后,一辆小汽车从甲地出发,小汽车和大巴车同时到达到乙地,已知小汽车的速度是大巴车的2倍,求大巴车和小汽车的速度.22.(8分)如图,在坐标系的网格中,且三点均在格点上.(1)C点的坐标为;(2)作关于y轴的对称三角形;(3)取的中点D,连接A1D,则A1D的长为.23.(8分)某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式24.(8分)(1)解不等式,并把解表示在数轴上.(2)解不等式组.25.(10分)化简并求值::,其中a=2018.26.(10分)如图,把△ABC平移,使点A平移到点O.(1)作出△ABC平移后的△OB′C′;(2)求出只经过一次平移的距离.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.2、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.3、B【分析】利用勾股定理的逆定理逐项判断即可.【详解】解:A、设a=x,则b=x,c=x,∵(x)2+(x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;B、设a=x,则b=x,c=x,∵(x)2+(x)2=(x)2,∴此三角形是直角三角形,故本选项符合题意;C、设a=2x,则b=2x,c=3x,∵(2x)2+(2x)2≠(3x)2,∴此三角形不是直角三角形,故本选项不符合题意;D、设a=x,则b=2x,c=x,∵(x)2+(2x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;故选B.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4、B【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,小方形的边长=a-b,根据比例式即可求解.【详解】解:∵,不妨设a=4x,b=3x,由题可知a2+b2等于大正方形的面积=25x2,∵小方形的边长=a-b,∴小正方形的面积=(a-b)2=x2,∴大正方形面积与小正方形面积之比为=25:1,故选B.【点睛】本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.5、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】五角星的对称轴共有5条,故选C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.6、B【分析】由直线解析式可知:该直线过定点(﹣1,0),画出图形,由图可知:在直线CD和直线CE之间,两侧格点相同,再根据E、D两点坐标求k的取值【详解】解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣1<﹣k<﹣,则<k<1.故选B.【点睛】此题考查的是一次函数与图形问题,根据一次函数的图像与点的坐标的位置关系求k的取值是解决此题的关键.7、C【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】A、由于82+92≠102,不能构成直角三角形,故本选项不符合题意;B、由于1.52+22≠52,不能构成直角三角形,故本选项不符合题意;C、由于62+82=102,能构成直角三角形,故本选项符合题意;D、由于202+212≠322,不能构成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8、C【解析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断.【详解】如图,
∵P,P1关于直线OA对称,P、P2关于直线OB对称,
∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,
∵∠AOB=30°,
∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=2∠AOB=60°,
∴△P1OP2是等边三角形.
故选C.【点睛】考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题.9、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.【详解】根据分式的定义
A.是整式,答案错误;
B.是整式,答案错误;
C.是分式,答案正确;
D.是根式,答案错误;
故选C.【点睛】本题考查了分式的定义,在解题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.10、C【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.【详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下∵∠C=90°,∠A=30°∴∠CBA=90°-∠A=60°∵BE平分∠CBA∴∠ABE=∠CBA=30°∴∠ABE=∠A∴EB=EA∵ED⊥AB∴ED恰为AB的中垂线故选C.【点睛】此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】先由甲套餐售价1800元,利润率为,可求出甲套餐的成本之和为1500元设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,则由题意得,可同时消去y和z,得到,再根据一个A礼盒的利润率为,可求出一个A礼盒的售价为50元,进而可得出一个B礼盒与一个C礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.【详解】设甲套餐的成本之和m元,则由题意得,解得元.设每个A礼盒的成本为x元,每个B礼盒的成本为y元,每个C礼盒的成本为z元,由题意得,同时消去字母y和z,可得所以A礼盒的利润率为,可得其利润元,因此一个A礼盒的售价元.设一个B礼盒的售价为a元,一个C礼盒的售价为b元,则可得,整理得元所以一个丁套餐的售价元一个丁套餐的成本元因此一个丁套餐的利润率故答案为【点睛】本题考查了方程组的应用以及有理数的混合运算,根据运算规律,找出关于x的方程组是解题的关键.12、2.018×10﹣1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数字0.000002018用科学记数法表示为2.018×10﹣1,故答案是:2.018×10﹣1.【点睛】本题主要考查科学记数法,掌握科学记数法是解题的关键.13、【解析】根据x轴上点的纵坐标为0列方程求出a的值,再求解即可.【详解】解:∵点P(3a+2,1−a)在x轴上,∴1−a=0,解得a=1,∴3a+2=3×1+2=5,∴点P的坐标为(5,0);故答案为:(5,0).【点睛】本题主要考查了点的坐标,掌握点的坐标是解题的关键.14、【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=,即BE取最小值为,∴BM+MN的最小值是.【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.15、3、4、1(答案不唯一).【详解】解:最常见的勾三股四弦五,勾股数为3,4,1.故答案为:3、4、1(答案不唯一).16、【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【详解】∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.如图,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,∵S△ABC=BC•AD=AC•BQ,∴BQ==,即PC+PQ的最小值是.故答案为.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17、-1【分析】先利用加减消元法解方程,,把①+②得到3x=6,解得x=2,然后把x=2代入①可求出y,最后把x、y的值都代入x-y中进行计算即可;【详解】解:,把①+②得:3x=6,解得x=2,把x=2代入①得2+y=5,解得y=3,∴方程组的解为,∴;故答案为:-1;【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.18、【分析】根据题意,由等腰三角形的性质可得BD是AE的垂直平分线,进而得到AD=ED,求出的度数即可得到关于的函数表达式.【详解】∵是的角平分线,∴,∴∴∴∴∴∵,∴∴∵∴∴,故答案为:.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.三、解答题(共66分)19、【分析】先将方程两边同乘最简公分母,将分式方程化为整式方程求解,最后验根即可.【详解】解:方程两边同乘最简公分母,得:去括号整理得:解得:经检验,是原分式方程的解.【点睛】本题考查解分式方程,找到最简公分母将分式方程转化为整式方程是关键,注意分式方程最后需要验根.20、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【点睛】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.21、大巴车的速度为60千米/小时,则小汽车的速度为120千米/小时【分析】设大巴车的速度为x千米/小时,则小汽车的速度为2x千米/小时,然后根据题意,列出分式方程,即可求出结论.【详解】解:设大巴车的速度为x千米/小时,则小汽车的速度为2x千米/小时由题意可知:解得:x=60经检验:x=60是原方程的解.∴小汽车的速度为2×60=120(千米/小时)答:大巴车的速度为60千米/小时,则小汽车的速度为120千米/小时.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.22、(1)(4,-2);(2)作图见解析;(3).【分析】(1)根据图象可得C点坐标;(2)根据关于y轴对称的点,横坐标互为相反数,纵坐标相等描出三个顶点,再依次连接即可;(3)先利用勾股定理逆定理证明为直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求得A1D.【详解】解:(1)由图可知,C(4,-2)故答案为:(4,-2);(2)如图所示,(3)由图可知,∴,即为直角三角形,∴.
故答案为:.【点睛】本题考查坐标与图形变化轴对称,勾股定理逆定理,直角三角形斜边上的中线.(3)中能证明三角形为直角三角形,并理解直角三角形斜边上的中线等于斜边的一半是解题关键.23、(1)40;(2).【分析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常识听评课活动记录
- 《麻雀》听评课记录
- 暑假安全教育课件13
- 《中位数和众数》课件
- 大学生创业法律指南1教学教材
- 土地利用规划学课件-张兆福
- 《方圆标志认证中心》课件
- 会客室地毯施工方案
- 上学期小学科研室科研工作计划
- 广电网络分公司工作总结及工作计划
- 国旗下讲话-“一二九运动纪念日”国旗下讲话稿
- (完整)城市污水处理-A2O工艺-毕业设计
- 慰问品采购投标方案(技术方案)
- ISO17025经典培训教材
- 政府经济学网上作业-第2次任务-以“政府支出”为主题-撰写一篇不少于1000字的小论文
- 人工智能辅助的网络协议设计
- 格构护坡施工方案完整
- 肾恶性肿瘤的护理查房
- 慢性便秘的生物反馈治疗
- 软件项目验收确认书
- 青岛科技大学机械设计基础期末复习题
评论
0/150
提交评论