版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省石家庄正定县联考数学八上期末学业水平测试模拟试题拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点M关于y轴对称的点N的坐标是()A. B. C. D.2.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①② B.只有①②③ C.只有③④ D.①②③④3.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对4.如果m是的整数部分,则m的值为()A.1 B.2 C.3 D.45.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.7、24、25 B.5、12、13 C.3、4、5 D.2、3、6.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m>nx﹣5n>0的整数解为()A.3 B.4 C.5 D.67.等于()A. B. C. D.8.下列运算正确的是()A.a+a=a2 B.a6÷a3=a2 C.(a+b)2=a2+b2 D.(ab3)2=a2b69.如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A. B.C. D.10.下列命题中为假命题的是()A.无限不循环小数是无理数 B.代数式的最小值是1C.若,则 D.有三个角和两条边分别相等的两个三角形一定全等二、填空题(每小题3分,共24分)11.如图,边长为12的等边三角形ABC中,E是高AD上的一个动点,连结CE,将线段CE绕点C逆时针旋转60°得到CF,连结DF.则在点E运动过程中,线段DF长度的最小值是__________.12.用不等式表示x的3倍与5的和不大于10是____________________;13.方程的解是________.14.已知,,那么__________.15.如图所示,垂直平分,交于点D,交于点E,若,则_______.16.函数y=–1的自变量x的取值范围是.17.在等腰中,若,则__________度.18.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为______.三、解答题(共66分)19.(10分)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.20.(6分)甲、乙两人在净月大街上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA﹣AB﹣BC﹣CD所示.(1)甲的速度为米/分,乙的速度为米/分;乙用分钟追上甲;乙走完全程用了分钟.(2)请结合图象再写出一条信息.21.(6分)如图,已知直线1经过点A(0,﹣1)与点P(2,3).(1)求直线1的表达式;(2)若在y轴上有一点B,使△APB的面积为5,求点B的坐标.22.(8分)(1)计算:-|-3|+(-2018)0+(-2)2019×(2)计算:〔(2x-y)(2x+y)-(2x-3y)2〕÷(-2y).23.(8分)每年的月日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于台,预算购买节省能源的新设备资金不超过万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为吨,乙型设备每月的产量为吨.若每月要求产量不低于吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.24.(8分)已知长方形的长为a,宽为b,周长为16,两边的平方和为1.求此长方形的面积.25.(10分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875八年级7880.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.26.(10分)因式分解:
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等即可得出结论.【详解】解:点M关于y轴对称的点N的坐标是故选A.【点睛】此题考查的是求一个点关于y轴对称点的坐标,掌握关于y轴对称的两点坐标关系是解决此题的关键.2、A【分析】根据平行四边形的判定定理判断②,根据平行四边形的性质和平行线的性质判断①,根据三角形三边关系判断③,根据等边三角形的性质分别求出△ACD、△ACB、△ABE的面积,计算即可判断④.【详解】∵∠ACB=90°,∠ABC=30°,
∴∠BAC=60°,AC=AB,
∵△ACD是等边三角形,
∴∠ACD=60°,
∴∠ACD=∠BAC,
∴CD∥AB,
∵F为AB的中点,
∴BF=AB,
∴BF∥CD,CD=BF,
∴四边形BCDF为平行四边形,②正确;
∵四边形BCDF为平行四边形,
∴DF∥BC,又∠ACB=90°,
∴AC⊥DF,①正确;
∵DA=CA,DF=BC,AB=BE,BC+AC>AB
∴DA+DF>BE,③错误;
设AC=x,则AB=2x,
S△ACD=,④错误,
故选:A.【点睛】此题考查平行四边形的判定和性质、等边三角形的性质,掌握一组对边平行且相等的四边形是平行四边形、等边三角形的有关计算是解题的关键.3、B【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=1.所以,三角形的周长为1.故选:B.【点睛】本题考查了等腰三角形的性质,分类讨论是关键.4、C【分析】找到所求的无理数在哪两个和它接近的整数之间,即可得出所求的无理数的整数部分.【详解】解:∵9<15<16,∴3<<4,∴m=3,故选:C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.进行计算可解答.【详解】A、72+24=252,符合勾股定理的逆定理,故能组成直角三角形;B、52+122=132,符合勾股定理的逆定理,故能组成直角三角形;C、32+42=52,符合勾股定理的逆定理,故能组成直角三角形;D、22+32≠()2,不符合勾股定理的逆定理,故不能组成直角三角形.故选:D.【点睛】此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6、B【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【详解】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为1.故选:B.【点睛】此题主要考查函数与不等式的关系,解题的关键是熟知函数图像交点的几何含义.7、D【解析】根据负整数指数幂的运算法则计算即可.【详解】解:.故选:D.【点睛】本题考查了负整数指数幂的运算法则,属于应知应会题型,熟知负整数指数幂的运算法则是解题关键.8、D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(ab3)2=a2b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.9、C【分析】根据各选项中的函数图象可知直线l1:y=ax+b经过第一、二、三象限,从而判断出a、b的符号,然后根据a、b的符号确定出l2:y=bx﹣a的图象经过的象限,选出正确答案即可.【详解】解:∵直线l1:经过第一、三象限,∴a>1,∴﹣a<1.又∵该直线与y轴交于正半轴,∴b>1.∴直线l2经过第一、三、四象限.在四个选项中只有选项C中直线l2符合,故选C.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠1),k>1时,一次函数图象经过第一三象限,k<1时,一次函数图象经过第二四象限,b>1时与y轴正半轴相交,b<1时与y轴负半轴相交.10、D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【详解】解:A.无限不循环小数是无理数,故本选项是真命题;B.代数式中根据二次根式有意义的条件可得解得:∵和的值都随x的增大而增大∴当x=2时,的值最小,最小值是1,故本选项是真命题;C.若,将不等式的两边同时乘a2,则,故本选项是真命题;D.有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题;故选D.【点睛】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.二、填空题(每小题3分,共24分)11、1【分析】取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时EG最短,再根据∠CAD=10°求解即可.【详解】解:如图,取AC的中点G,连接EG,∴.∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∠ECD=∠ECD,∴∠DCF=∠GCE,∵AD是等边△ABC底边BC的高,也是中线,∴,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时,,,∴DF=EG=1.故答案为:1.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.12、3x+5≤1【分析】直接利用x的3倍,即3x,与5的和,则3x+5,进而小于等于1得出答案.【详解】解:由题意可得:3x+5≤1.
故答案为:3x+5≤1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.13、.【分析】方程两边同乘以(x-3)变为整式方程,解答整式方程,最后进行检验即可.【详解】,方程两边同乘以(x-3),得,x-2=4(x-3)解得,.检验:当时,x-3≠1.故原分式方程的解为:.【点睛】本题主要考查了解分式方程,解题的关键是将分式方程转化为整式方程再求解,注意最后要检验.14、1【分析】根据完全平方公式即可求出答案.【详解】.故答案为:1.【点睛】本题考查完全平方公式的应用,关键在于熟练掌握完全平方公式.15、40°【分析】根据垂直平分线的性质可得AE=BE,再根据等边对等角可得∠ABE=∠A,利用直角三角形两锐角互余可得∠A的度数即∠ABE的度数.【详解】解:∵垂直平分,∴AE=BE,∠ADE=90°,∴∠ABE=∠A=90°-=40°,故答案为:40°.【点睛】本题考查垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余.理解垂直平分线上的点到线段两端距离相等是解题关键.16、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.考点:二次根式有意义17、40°或70°或100°.【分析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.【详解】(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°-∠A-∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°-∠A)=70°;故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况的时∠B的度数是解此题的关键.18、1【分析】根据线段垂直平分线的性质求出AD=BD,求出∠BAD=∠B=30°,求出∠CAD=30°,根据含30°角的直角三角形的性质求出AD即可.【详解】∵DE是线段AB的垂直平分线,
∴AD=BD,
∵∠B=30°,
∴∠BAD=∠B=30°,
又∵∠C=90°
∴∠CAB=90°-∠B=90°-30°=10°,
∴∠DAC=∠CAB-∠BAD=10°-30°=30°,
∴在Rt△ACD中,AD=2CD=1,∴BD=AD=1.故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,含30°角的直角三角形的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.三、解答题(共66分)19、(1)△ACP≌△BPQ,PC⊥PQ,理由见解析;(2)2或【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C=∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【详解】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20、(1)60,80,12,30;(2)见解析(答案不唯一).【分析】(1)根据函数图象中的数据,可以计算出甲、乙的速度,乙用多少分钟追上甲,乙走完全程需要多少时间;
(2)答案不唯一,只要符合实际即可.【详解】(1)由图可得,甲的速度为:240÷4=60(米/分钟),乙的速度为:16×60÷(16﹣4)=16×60÷12=80(米/分钟),乙用16﹣4=12(分钟)追上甲,乙走完全程用了:2400÷80=30(分钟),故答案为:60,80,12,30;(2)甲走完全程需要2400÷60=40(分钟).【点睛】本题考查了函数图象的应用,解题的关键是正确理解图象并求出甲乙两人的速度,利用数形结合的思想解答.21、(1)y=2x﹣1;(2)点B的坐标为(0,4)或(0,﹣6).【分析】(1)利用待定系数法求出直线l的表达式即可;(2)设B(0,m),得出AB的长,由P的横坐标乘以AB长的一半表示出三角形APB面积,由已知面积列方程求出m的值,即可确定出B的坐标.【详解】解:(1)设直线l表达式为y=kx+b(k,b为常数且k≠0),把A(0,﹣1),P(2,3)代入得:,解得:,则直线l表达式为y=2x﹣1;(2)设点B的坐标为(0,m),则AB=|1+m|,∵△APB的面积为5,∴AB•xP=5,即|1+m|×2=5,整理得:|1+m|=5,即1+m=5或1+m=﹣5,解得:m=4或m=﹣6,故点B的坐标为(0,4)或(0,﹣6).【点睛】本题是一次函数的综合题,涉及了待定系数法求一次函数解析式、三角形的面积等知识,解答本题的关键是数形结合思想及分类讨论思想的运用.22、(1)1;(2)-6x+5y【分析】(1)根据实数的混合运算法则进行计算即可得解;(2)根据整式的混合运算法则进行计算即可得解.【详解】(1)原式==4-3+1-1=1;(2)原式====.【点睛】本题主要考查了实数及整式的混合运算,熟练掌握相关运算法则是解决本题的关键.23、(1)甲万元,乙万元;(2)有种;(3)选购甲型设备台,乙型设备台【分析】(1)设甲型设备每台的价格为x万元,乙型设备每台的价格为y万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲型设备m台,则购买乙型设备(10−m)台,由购买甲型设备不少于3台且预算购买节省能源的新设备的资金不超过110万元,即可得出关于m的一元一次不等式组,解之即可得出各购买方案;(3)由每月要求总产量不低于2040吨,可得出关于m的一元一次不等式,解之结合(2)的结论即可找出m的值,再利用总价=单价×数量求出两种购买方案所需费用,比较后即可得出结论.【详解】解:(1)设甲型设备每台的价格为万元,乙型设备每台的价格为万元,根据题意得:,解得:答:甲型设备每台的价格为万元,乙型设备每台的价格为万元.(2)设购买甲型设备台,则购买乙型设备台,根据题意得:解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小区居民健康需求的电子产品解决方案
- Module 4 Unit 3 Story time(说课稿)-2023-2024学年牛津上海版(试用本)英语二年级下册
- 2025年度销售合同终止及售后服务质量监管合同2篇
- 8 我们受特殊保护《我们是未成年人》(说课稿)-部编版道德与法治六年级上册
- 9 种豆子 说课稿-2023-2024学年科学二年级下册冀人版
- Unit3 Fascinating Parks Listening and Talking 说课稿-2024-2025学年高中英语人教版(2019)选择性必修第一册
- 2025年挂靠出租车运营管理协议2篇
- Unit 8 Let's celebrate!Period 1 Welcome to the unit 说课稿2024-2025学年牛津译林版英语七年级上册
- Unit 7 Days and Months Lesson 2 Winter in Harbin 说课稿2024-2025学年冀教版(2024)七年级英语上册
- 《衣服的学问:3 我的扎染作品》说课稿-2023-2024学年三年级下册综合实践活动沪科黔科版
- 制造样品生产作业指导书
- 服务经营培训课件ppt 老客户经营综合版
- MT/T 199-1996煤矿用液压钻车通用技术条件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力学性能试验第1部分:桌类强度和耐久性
- 第三方在线纠纷解决机制(ODR)述评,国际商法论文
- 公寓de全人物攻略本为个人爱好而制成如需转载注明信息
- 第5章-群体-团队沟通-管理沟通
- 肾脏病饮食依从行为量表(RABQ)附有答案
- 深基坑-安全教育课件
- 园林施工管理大型园林集团南部区域养护标准图例
评论
0/150
提交评论