版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡市经开区数学八上期末学业水平测试模拟试题题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.如图,,AE与BD交于点C,,则的度数为()A. B. C. D.3.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④ B.①④③② C.①④②③ D.②①④③4.已知P1(-3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定5.八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案()A.2B.3C.4D.56.如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A. B.4 C.3 D.7.下列命题是真命题的是()A.如果两角是同位角,那么这两角一定相等B.同角或等角的余角相等C.三角形的一个外角大于任何一个内角D.如果a2=b2,那么a=b8.如图所示,在中,是边上的中线,,,,则的值为()A.3 B.4 C.5 D.69.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA10.在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.已知在中,,,点为直线上一点,连接,若,则_______________.12.当x为_____时,分式的值为1.13.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是_______14.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是_____.15.如图1,在中,.动点从的顶点出发,以的速度沿匀速运动回到点.图2是点运动过程中,线段的长度随时间变化的图象.其中点为曲线部分的最低点.请从下面A、B两题中任选一作答,我选择________题.A.的面积是______,B.图2中的值是______.16.一种微生物的半径是,用小数把表示出来是_______.17.因式分解:________;________.18.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,当∣BC-AC∣最大时,点C的坐标是________.三、解答题(共66分)19.(10分)解方程.①②20.(6分)已知xa=3,xb=6,xc=12,xd=1.(1)求证:①a+c=2b;②a+b=d;(2)求x2a﹣b+c的值.21.(6分)如图,AB//CD,Rt△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,∠EFG=90°,∠E=32°.(1)∠FGE=°(2)若GE平分∠FGD,求∠EFB的度数.22.(8分)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.(8分)已知的三边长均为整数,的周长为奇数.(1)若,,求AB的长.(2)若,求AB的最小值.24.(8分)为了解学生课余活动情况.晨光中学对参加绘画,书法,舞蹈,乐器这四个课外兴趣小组的人员分布情况进行调查.并报据收集的数据绘制了两幅不完整的统计阁.请根据图中提供的信息.解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数.(3)如果该校共有300名学生参加这4个课外兴趣小组,而每位教师最多只能辅导本组的20名学生,估计乐器兴趣小组至少需要准备多少名教师?25.(10分)解二元一次方程组:26.(10分)某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下表:如果两人中只录取一人,根据表格确定个人成绩,谁将被录用?王丽张瑛专业知识1418工作经验1616仪表形象1812
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2、D【分析】直接利用三角形的外角性质得出度数,再利用平行线的性质分析得出答案.【详解】解:,.故选D.【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.3、B【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.4、B【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y1<y2.故选B.【点睛】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征.5、A【解析】解:设购买单价为8元的盆栽x盆,购买单价为10元的盆栽y盆,根据题意可得:8x+10y=100,当x=10,y=2,当x=5,y=6,当x=0,y=10(不合题意,舍去).故符合题意的有2种,故选A.点睛:此题主要考查了二元一次方程的应用,正确得出等量关系是解题关键.6、A【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出.再根据ASA证明,那么,等量代换得到,利用线段的和差关系求出.然后在直角中利用勾股定理求出CD的长.【详解】解:如图,连接FC,则.,.在与中,,,,,.在中,,,,.故选A.【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.7、B【分析】根据平行线的性质、余角的概念、三角形的外角性质、有理数的乘方法则判断.【详解】解:A、两直线平行,同位角相等,∴如果两角是同位角,那么这两角一定相等是假命题;B、同角或等角的余角相等,是真命题;C、三角形的一个外角大于任何一个与它不相邻的内角,∴三角形的一个外角大于任何一个内角,是假命题;D、(﹣1)2=12,﹣1≠1,∴如果a2=b2,那么a=b,是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、B【分析】首先过点A作AE⊥BC,交CB的延长线于E,由AE⊥BC,DB⊥BC,得出AE∥BD,由中位线的性质得出BC=BE,然后由∠ABC=120°,得出∠ABE=60°,∠BAE=30°,AB=2BE=2BC,即可得解.【详解】过点A作AE⊥BC,交CB的延长线于E,如图所示:∵AE⊥BC,DB⊥BC,∴AE∥BD,∵AD=CD,∴BD是△ACE的中位线,∴BC=BE,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,∵∴BC=4故答案为B.【点睛】此题主要考查平行线的判定与性质以及中位线的性质、特殊直角三角形的性质,熟练掌握,即可解题.9、D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,即在△BCD和△ACE中△BCD≌△ACE故A项成立;在△BGC和△AFC中△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.10、C【分析】由y的值随着x值的增大而减小可得出2m﹣1<1,再利用b=1>1,可得出一次函数y=(2m﹣1)x+1的图象与y轴交点在其正半轴上,进而可得出一次函数y=(2m﹣1)x+1的图象不经过第三象限.【详解】解:∵在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,∴2m﹣1<1.∵2m﹣1<1,1>1,∴一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,∴一次函数y=(2m﹣1)x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,即在一次函数y=kx+b(k≠1)中,①k>1,b>1⇔y=kx+b的图象在一、二、三象限;②k>1,b<1⇔y=kx+b的图象在一、三、四象限;③k<1,b>1⇔y=kx+b的图象在一、二、四象限;④k<1,b<1⇔y=kx+b的图象在二、三、四象限.二、填空题(每小题3分,共24分)11、60°或30°【分析】分点D在线段AC上和点D在射线AC上两种情况,画出图形,利用等腰直角三角形的性质和角的和差计算即可.【详解】解:当点D在线段AC上时,如图1,∵,,∴,∵,∴;当点D在射线AC上时,如图2,∵,,∴,∵,∴.故答案为:60°或30°.【点睛】本题主要考查了等腰直角三角形的性质,属于基础题型,正确分类画出图形、熟练掌握等腰直角三角形的性质是解题关键.12、2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,
∴x=2,
当x=2时,2x+1≠1.
∴当x=2时,分式的值是1.
故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.13、15cm【详解】在△ABC中,边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,AE=BE,AD=BD,△ADC的周长为9cm,即AC+CD+AD=9,则△ABC的周长=AB+BC+AC=AE+BE+BD+CD+AC=AE+BE+AD+CD+AC=6+9=15cm【点睛】本题考查垂直平分线,解答本题的关键是掌握垂直平分线的概念和性质,运用其来解答本题14、x=1【分析】由直线y=1x+b与x轴的交点坐标是(1,0),求得b的值,再将b的值代入方程1x+b=0中即可求解.【详解】把(1,0)代入y=1x+b,
得:b=-4,
把b=-4代入方程1x+b=0,
得:x=1.
故答案为:x=1.【点睛】考查了一次函数与坐标轴的交点坐标问题,解题关键抓住直线y=1x+b与x轴的交点坐标即为关于x的方程1x+b=0的解.15、A.B.【解析】由图形与函数图像的关系可知Q点为AQ⊥BC时的点,则AQ=4cm,再求出AB=×3s=6cm,利用勾股定理及可求出BQ,从而求出BC,即可求出的面积;再求出的周长,根据速度即可求出m.【详解】如图,当AQ⊥BC时,AP的长度最短为4,即AQ=4,AB=×3s=6cm,∴BQ=∵∴BC=2BQ=4∴的面积为=;的周长为6+6+4=12+4∴m=(12+4)÷2=故答案为:A;或B;.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质及函数图像的性质.16、0.1【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6×10-6m=0.1m.故答案为:0.1.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).17、【分析】原式提取,再利用平方差公式分解即可;首先提取公因式,再利用完全平方公式分解因式得出答案.【详解】解:故答案为:;.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.18、(0,6)【解析】试题解析:当点在同一条直线上时,取得最大值.设直线的解析式为:∴可得出方程组解得则这个一次函数的解析式为y=−2x+6,当时,故点的坐标为:故答案为三、解答题(共66分)19、①x=﹣1,②x=1【分析】①分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;②分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:①去分母得:4+x2+5x+6=x2﹣3x+2,移项合并得:8x=﹣8,解得:x=﹣1,经检验:x=﹣1是分式方程的解;②去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验:x=1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20、(1)①证明见解析;②证明见解析;(2)1.【分析】(1)根据同底数幂的乘法法则xa+c=x2b.xa•xb=xd.据此即可证得①a+c=2b;②a+b=d;(2)由(1)的结论①+②得2a+b+c=2b+d,移项合并即可得原式=xd=1.【详解】(1)证明:①∵3×12=62,∴xa•xc=(xb)2即xa+c=x2b,∴a+c=2b.②∵3×6=1,∴xa•xb=xd.即xa+b=xd.∴a+b=d;(2)解:由(1)知a+c=2b,a+b=d.则有:2a+b+c=2b+d,∴2a﹣b+c=d∴x2a﹣b+c=xd=1.【点睛】本题考查同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算性质是解题的关键.21、(1)∠FGE=58°;(2)∠EFB=26°.【分析】(1)由题意利用三角形内角和是180°,据此即可求出∠FGE的度数;(2)根据题意利用角平分线的性质得出∠EGD=∠FGE=58°,再利用平行线性质即可得出∠EFB的度数.【详解】解:(1)∵∠EFG=90°,∠E=32°,∴∠FGE=90°-32°=58°;(2)∵GE平分∠FGD,∴∠EGD=∠FGE=58°∵AB∥CD,∴∠EHB=∠EGD=58°,∴∠EFB=∠EHB-∠E=26°.【点睛】本题考查了三角形内角和定理、角平分线的性质以及平行线的判定,解题的关键是牢记“三角形内角和是180°”是解题的关键以及利用三角形内角和定理及角平分线的定义进行分析.22、(1)△ACP≌△BPQ,PC⊥PQ,理由见解析;(2)2或【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C=∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.【详解】解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23、(1)7或9;(2)1.【分析】(1)根据三角形的三边关系求出AB的取值范围,再由AB为奇数即可得出结论;(2)根据AC﹣BC=5可知AC、BC中一个奇数、一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专利许可合同:某科技公司与某初创企业就发明专利的许可使用合同2篇
- 2024年度防洪标识牌施工合同3篇
- 恒大商业综合体2024年度总包建设进度协调管理合同3篇
- 全新业务市场拓展合同(2024版)
- 二零二四年度全新医疗服务合同
- 2024企业数据保护合同模板一
- 2024会议承包合同协议书
- 2024年城市供水排水工程建设的委托合同
- 2024年国际货物买卖租赁合同
- 2024年度物业管理合同(商业综合体管理与维护)2篇
- 期中测试卷(试题)-2024-2025学年人教版数学六年级上册
- 共享餐厅合同协议书
- 《研学旅行基地运营与管理》课件-研学基地1.3 现状
- 社区常见病多发病护理常规(22种疾病)2024版
- 12D101-5 110KV及以下电缆敷设
- 光伏行业发展报告2024-2025
- 一年级拼音默写表
- 好书读书分享名著导读《童年》
- 医疗设备采购 投标方案(技术标方案)
- 2023江苏南京市玄武区招聘社区工作者拟聘用人员笔试历年典型考题及考点剖析附答案带详解
- 物流园保安服务投标方案(技术方案)
评论
0/150
提交评论