2025届河南省宝丰市数学八年级第一学期期末复习检测试题含解析_第1页
2025届河南省宝丰市数学八年级第一学期期末复习检测试题含解析_第2页
2025届河南省宝丰市数学八年级第一学期期末复习检测试题含解析_第3页
2025届河南省宝丰市数学八年级第一学期期末复习检测试题含解析_第4页
2025届河南省宝丰市数学八年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省宝丰市数学八年级第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82分,82分,245分2,190分2.那么成绩较为整齐的是()A.甲班 B.乙班 C.两班一样整齐 D.无法确定2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例3.如图,中,,,,则的度数等于()A. B. C. D.4.若下列各组数值代表线段的长度,则不能构成三角形的是()A.4,9,6B.15,20,8C.9,15,8D.3,8,45.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其全等的依据是()A.SAS B.ASA C.AAS D.SSS6.式子中x的取值范围是()A.x≥1且x≠2 B.x>1且x≠2 C.x≠2 D.x>17.下列条件中,能判定△ABC为直角三角形的是().A.∠A=2∠B-3∠C B.∠A+∠B=2∠C C.∠A-∠B=30° D.∠A=∠B=∠C8.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是()(参考数据:,,)A.1 B.2 C.3 D.49.已知三角形两边长分别为7、11,那么第三边的长可以是()A.2 B.3 C.4 D.510.若分式方程无解,则的值为()A.5 B. C. D.二、填空题(每小题3分,共24分)11.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是________组.12.化简:=_____.13.估算≈_____.(精确到0.1)14.若|3x+2y+1|+=0,则x﹣y=_____15.某日上午,甲、乙两人先后从A地出发沿同一条道路匀速行走前往B地,甲8点出发,如图是其行走路程s(千米)随行走时间t(小时)变化的图象,乙在甲出发0.2小时后追赶甲,若要在9点至10点之间(含9点和10点)追上甲,则乙的速度v(单位:千米/小时)的范围是_____________.16.在平面直角坐标系中,点P(2,3)关于y轴对称的点的坐标是_____.17.比较大小:_______3(填“˃”或“=”或“<”).18.如图,在△ABC中,D是BC上的点,且AB=AC,BD=AD,AC=DC,那么∠B=_____.三、解答题(共66分)19.(10分)列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少,小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树,他先让爸爸开车驶过这段公路,发现速度为60千米/时,走了约3分钟(1)由此估算这段路长约____千米;(2)然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米,小宇计从路的起点开始,每a米种一棵树,绘制出了示意图,考虑到投入资金的限制,他设计了一种方案,将原计划的a扩大一倍,则路的两侧共计减少400棵树,请你求出a的值20.(6分)甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”);甲的速度是米/分钟;(2)甲与乙何时相遇?(3)在甲、乙相遇之前,何时甲与乙相距250米?21.(6分)如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,(1)关于x,y的方程组的解是;(2)a=;(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.22.(8分)描述证明:小明在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整小明发现的这个有趣的现象;(2)请你证明小明发现的这个有趣现象.23.(8分)如图在中,,将三角板中30度角的顶点D放在AB边上移动,使这个30度角的两边分别与的边AC,BC相交于点E,F,且使DE,始终与AB垂直(1)求证:是等边三角形(2)若移动点D,使EF//AB时,求AD的长24.(8分)已知,求,的值.25.(10分)已知7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,则这个多项式是______.26.(10分)在平面直角坐标系中,点A(4,0),B(0,4),点C是x轴负半轴上的一动点,连接BC,过点A作直线BC的垂线,垂足为D,交y轴于点E.(1)如图(1),①判断与是否相等(直接写出结论,不需要证明).②若OC=2,求点E的坐标.(2)如图(2),若OC<4,连接DO,求证:DO平分.(3)若OC>4时,请问(2)的结论是否成立?若成立,画出图形,并证明;若不成立,说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据方差的意义知,方差越小,波动性越小,故成绩较为整齐的是乙班.【详解】由于乙的方差小于甲的方差,故成绩较为整齐的是乙班.故选B.【点睛】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、B【详解】解:设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.3、B【分析】先根据等腰三角形的性质可求出的度数,再根据三角形的外角性质即可得.【详解】故选:B.【点睛】本题考查了等腰三角形的性质、三角形的外角性质,熟记各性质是解题关键.4、D【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】A.6+4>9,则能构成三角形,故此选项不符合题意;B.15+8>20,则能构成三角形,故此选项不符合题意;C.8+9>15,则能构成三角形,故此选项不符合题意;D.3+4<8,则不能构成三角形,故此选项符合题意.故选D.【点睛】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看其中较小的两个数的和是否大于第三个数即可.5、D【解析】试题分析:本题考查的关键是作角的过程,作角过程中所产生的条件就是证明全等的条件.根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等.解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选D.考点:全等三角形的判定.6、A【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】根据题意得x−1⩾0且x−2≠0解得:x⩾1且x≠2.故选A.【点睛】本题主要考查二次根式有意义的条件,分式有意义的条件,熟悉掌握条件是关键.7、D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=°,所以A选项错误;

B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;

C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;

D、∠A+∠B+∠C=180°,而∠A=∠B=∠C,则∠C=90°,所以D选项正确.

故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.8、B【分析】如图,在直角△COD中,根据勾股定理求出CD的长,进而可得CB的长,然后与四辆车的车高进行比较即得答案.【详解】解:∵车宽是2米,∴卡车能否通过,只要比较距厂门中线1米处高度与车高即可.如图,在直角△COD中,∵OC=2,OD=1,∴米,∴CB=CD+BD=1.73+1.6=3.33米.∵2.8<3.33,3.1<3.33,3.4>3.33,3.7>3.33,∴这四辆车中车高为2.8米和3.1米的能够通过,而车高为3.4米和3.7米的则不能通过.故选:B.【点睛】本题考查了勾股定理在实际中的应用,难度不大,解题的关键是正确理解题意、熟练掌握勾股定理.9、D【解析】设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,故选D.点睛:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.10、B【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=1,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:3x−2-m=2x+2,整理得x=m+4由分式方程无解,得到x+1=1,即x=−1,将x=−1代入整式方程得:-1=m+4,解得:m=−5,故选:B.【点睛】此题考查了分式方程的解,分式方程无解即为最简公分母为1.二、填空题(每小题3分,共24分)11、甲【解析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【详解】=8,=8,[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点睛】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.12、x【分析】把分子分解因式,然后利用分式的性质化简得出答案.【详解】解:原式==x.故答案为:x.【点睛】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键,本题也考查了因式分解.13、1.2【分析】由于2<3<16,可得到的整数部分是1,然后即可判断出所求的无理数的大约值.【详解】∵2<3<16,∴1<<4,∴的整数部分是1,∵1.162=2.2856,1.172=3.0482,∴≈1.2,故答案是:1.2【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.14、﹣1【分析】根据绝对值和算术平方根的非负性得到方程组,解方程组后即可得到答案.【详解】解:∵|3x+2y+1|+=0,∴,解得,∴x﹣y=﹣11﹣16=﹣1.故答案为:﹣1.【点睛】此题考查绝对值和算术平方根的非负性,根据非负性得到方程组是解题的关键.15、【分析】先根据图象,求出甲的速度,再根据题意,列出关于v的一元一次不等式组,即可求解.【详解】根据图象可知:甲的速度为:6÷2=3(千米/小时),由题意可得:,解得:,故答案是:【点睛】本题主要考查一元一次不等式组的实际应用,根据题目中的不等量关系,列出不等式组,是解题的关键.16、(﹣2,3)【分析】根据点关于坐标轴对称:关于y轴对称纵坐标不变,横坐标变为原来相反数可得出答案.【详解】解:点关于y轴对称的点的坐标是,故答案为:.【点睛】本题考查点关于坐标轴对称的问题,解题关键在于关于y轴对称纵坐标不变,横坐标变为原来相反数可得出答案.17、<【分析】利用平方法即可比较.【详解】解:∵,,7<9,∴,故答案为:<.【点睛】本题主要考查了无理数的大小比较.掌握平方法比较实数大小的方式是解题关键.18、36°【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AC=CD可知∠ADC=∠CAD=2x,再在△ACD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.【详解】解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AC=CD,∴∠ADC=∠CAD=2x,在△ACD中,∠C=x,∠ADC=∠CAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠B=36°.故答案为:36°.【点睛】本题考查了等腰三角形等边等角的性质,三角形外角的性质,三角形内角和定理,掌握等腰三角形的性质是解题的关键.三、解答题(共66分)19、(1)1;(2)7.5【分析】(1)利用路程=速度×时间可求出这条路的长度;(2)设原计划每a米种一棵树,则现设计每2a米种一棵树,根据需种树的棵数=路的长度÷树间距结合现设计的每一侧都减少400棵树,即可得出关于a的分式方程,解之经检验后即可得出结论.【详解】(1)这段路长约60(千米).

故答案为:1.(2)设原计划每a米种一棵树,则现设计每2a米种一棵树,

依题意,得:由愿意可得,解方程得,经检验,满足方程且符合题意.答:的值是.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.注意单位的统一.20、(1)乙;1米/分钟;(2)12分钟时相遇;(3)2分钟时【分析】(1)依据函数图象可得到两人跑完全程所用的时间,从而可知道谁先到达终点,依据速度=路程÷时间可求得甲的速度;(2)先求得甲的路程与时间的函数关系式,然后求得10<x<16时,乙的路程与时间的函数关系式,最后,再求得两个函数图象交点坐标即可;(3)根据题意列方程解答即可.【详解】解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==1米/分钟.故答案为:乙;1.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=1x,设10分钟后(即10<x<16),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得,解得,所以10分钟后乙跑的路程y(米)与时间x(分钟)之间的函数关系式,联立甲乙两人的函数关系式解得,答:甲与乙在12分钟时相遇;(3)设此时起跑了x分钟,根据题意得,解得x=2.答:在甲、乙相遇之前,2分钟时甲与乙相距1米.【点睛】本题考查的是一次函数的实际应用中的行程问题,解决此类问题,需要结合解析式、图象与问题描述的实际情况,充分理解题意,熟练进行运算才比较简便.21、(1);(2)-1;(3)2【分析】(1)先求出点P为(1,2),再把P点代入解析式即可解答.(2)把P(1,2)代入y=ax+3,即可解答.(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.【详解】(1)把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为;(2)把P(1,2)代入y=ax+3,得2=a+3,解得a=﹣1.故答案为﹣1;(3)∵函数y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),∴这两个交点之间的距离为3﹣(﹣1)=2,∵P(1,2),∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×2×2=2.【点睛】此题考查一次函数与二元一次方程,解题关键在于把已知点代入解析式求解.22、(1);;(2)先通分,再根据完全平方公式分解因式,然后去分母即可得到结论.【分析】(1)依据题意,用含“a”、“b”的式子把题中描述的数量关系表达出来即可;(2)把(1)中条件中所列的式子通过分式的运算化简,再结合乘法公式进行变形,就可得到结论;【详解】解:(1)如果,那么;(2)证明:∵,∴,∴,∴;又∵a、b均为正数,∴.【点睛】此题主要考查的是分式的加减运算及完全平方公式的应用.解(2)时,由条件“,”右边是整式,而左边是异分母分式的加、减,易知需将左边化简;而当化简得到“”时,熟悉“完全平方公式”的同学就已经非常清楚该怎样做了.23、(1)见解析;(2)【分析】(1)由已知可得∠FDB=60°,∠B=60°,从而可得到△BDF是等边三角形;(2)设AD=x,CF=y,求出y与x之间的关系式,当EF∥AB时,∠CEF=30°,∠FED=∠EDA=90°,CF=EF,EF=DF,代入计算即可求得AD的长.【详解】解:(1)∵ED⊥AB,∠EDF=30°,∴∠FDB=60°,

∵∠A=30°,∠ACB=90°,∴∠B=60°,

∴∠DFB=60°,∴△BDF是等边三角形;(2)设AD=x,CF=y,∵∠A=30°,∠ACB=90°,∴AB=2BC=2,

∵CF=y,∴BF=1-y,又△BDF是等边三角形,∴BD=BF=1-y,

∴x=2-(1-y)=1+y,∴y=x-1,当EF∥AB时,∠CEF=30°,∠FED=∠EDA=90°,

∴CF=EF,EF=DF,

∵DF=BF=1-y,∴4y=1-y,∴y=,∴x=y+1=,即AD=.【点睛】本题考查了一次函数的应用,等边三角形的判定与性质,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论