版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共4页2024-2025学年广西玉林博白县九上数学开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在一组数据3,4,4,6,8中,下列说法错误的是()A.它的众数是4 B.它的平均数是5C.它的中位数是5 D.它的众数等于中位数2、(4分)“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,这体现的数学思想方法是()A.分类 B.类比 C.方程 D.数形结合3、(4分)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4 B.5 C.6 D.74、(4分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A.5元B.10元C.20元D.10元或20元5、(4分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为(A.70° B.60° C.50° D.80°6、(4分)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.7、(4分)如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.9 B.35 C.45 D.无法计算8、(4分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.5,12,13 C.2,3,4 D.1,,3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)使代数式有意义的x的取值范围是_____.10、(4分)如图,,请你再添加一个条件______,使得(填一个即可).11、(4分)如图,中,D是AB的中点,则CD=__________.12、(4分)一次函数的图象如图所示,不等式的解集为__________.13、(4分)一元二次方程x2﹣x=0的根是_____.三、解答题(本大题共5个小题,共48分)14、(12分)计算(1)计算:(2)分解因式:15、(8分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.16、(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.17、(10分)如图,矩形的两条边、分别在轴和轴上,已知点坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.(1)线段;(2)求点坐标及折痕的长;(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;18、(10分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)求证:四边形ACFD为平行四边形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知:AB=2m,CD=28cm,则AB:CD=_____.20、(4分)计算:(﹣)2=_____.21、(4分)已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.22、(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是______.23、(4分)若a,b都是实数,b=+﹣2,则ab的值为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.(1)求点A、B、D的坐标;(2)求直线BD的表达式.25、(10分)(1)计算:(2)解方程:.26、(12分)先化简再求值:,再从0,﹣1,2中选一个数作为a的值代入求值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
一组数据中出现次数最多的数为众数;将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.根据平均数的定义求解.【详解】在这一组数据中4是出现次数最多的,故众数是4;将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,故选C.本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、B【解析】
根据分式和分数的基本性质,成立的条件等相关知识,分析求解.【详解】“分数”与“分式”有许多共同点,我们在学习“分式”时,常常对比“分数”的相关知识进行学习,比如分数的基本性质,分数成立的条件等,这体现的数学思想方法是类比故选:B本题的解题关键是掌握分数和分式的基本性质和概念.3、C【解析】
解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选C.4、C【解析】
设每件衬衫应降价x元,则每天可销售(1+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设每件衬衫应降价x元,则每天可销售(1+2x)件,根据题意得:(40-x)(1+2x)=110,解得:x1=10,x2=1.∵扩大销售,减少库存,∴x=1.故选C.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5、A【解析】
根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,则∠C=∠DAC,再利用三角形的内角和求出∠BAC,故可求出∠BAD.【详解】根据题意尺规作图得到NM是AC的垂直平分线,故AD=CD,∴∠DAC=∠C=30°,∵∠B=50°,∠C=30°∴∠BAC=180°-50°-30°=100°,∴∠BAD=∠BAC-∠DAC=70°.故选A.此题主要考查垂直平分线的性质,解题的关键是熟知三角形的内角和与垂直平分线的性质.6、B【解析】
根据轴对称图形和中心对称图形的概念即可逐一判断.【详解】解:A、是轴对称图形,也是中兴对称图形,故A不符合题意;B、是轴对称图形,但不是中兴对称图形,故B符合题意;C、是轴对称图形,也是中兴对称图形,故C不符合题意;D、是轴对称图形,也是中兴对称图形,故D不符合题意;故选:B.本题考查了轴对称图形和中心对称图形的识别,解题的关键是熟知轴对称图形和中兴对称图形的概念.7、C【解析】【分析】由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化简可求得结果.【详解】在Rt△ABD和Rt△ADC中,BD2=AB2-AD2,CD2=AC2-AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)=AC2-AB2=1.故选C【点睛】本题考核知识点:勾股定理.解题关键点:灵活运用勾股定理.8、B【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.【详解】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;
C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.
故选:B.本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(本大题共5个小题,每小题4分,共20分)9、x≥0且x≠2【解析】
根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得2x-1≠0,再解不等式即可.【详解】由题意得:x⩾0且2x−1≠0,解得x⩾0且x≠,故答案为x⩾0且x≠.本题考查了二次根式有意义的条件,分式有意义的条件.牢记分式、二次根式成立的条件是解题的关键.10、(答案不唯一)【解析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.【详解】解:∵∠A=∠A,AB=AC,∴若按照SAS可添加条件AD=AE;若按照AAS可添加条件∠ADB=∠AEC;若按照ASA可添加条件∠B=∠C;故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.11、6.1【解析】
首先根据勾股定理求得AB=13,然后由“斜边上的中线等于斜边的一半”来求CD的长度.【详解】∵Rt△ABC中,,∴AB===13,∵D为AB的中点,∴CD=AB=6.1.故答案为:6.1.本题考查了勾股定理和直角三角形斜边上的中线.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12、【解析】
首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.【详解】解:根据图象可得:解得:所以可得一次函数的直线方程为:所以可得,解得:故答案为本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.13、x1=0,x2=1【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1);(2).【解析】
(1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;
(2)原式提取公因式,再利用完全平方公式分解即可.【详解】(1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;(2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.本题考查的知识点是整式的混合运算,提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算,提公因式法与公式法的综合运用.15、探究三:16,6;结论:n²,n(n-1)2【解析】
探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,边长为1的正三角形共有1+3+5+7+⋅⋅⋅+(2n-1)=n2个;边长为2的正三角形共有1+2+3+⋅⋅⋅+(n-1)=应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有1+3+5+7=4边长为2的正三角形有1+2+3=(1+3)×32结论:连接边长为n的正三角形三条边的对应n等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第n层有(2n-1)个,共有1+3+5+7+⋅⋅⋅+(2n-1)=n边长为2的正三角形,共有1+2+3+⋅⋅⋅+(n-1)=n(n-1)2应用:边长为1的正三角形有252=625边长为2的正三角形有25×(25-1)2=300故答案为探究三:16,6;结论:n²,n(n-1)2;应用:625,本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.16、(1)见解析,(﹣3,﹣1);(1)见解析,(﹣3,﹣1)【解析】
(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(1)根据关于原点对称的点的坐标特征写点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(﹣1,1);(1)如图,△A1B1C1为所作,点C1的坐标为(﹣3,﹣1).本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.17、(1);(2);拆痕DE的长为;(3)点Q坐标为【解析】
(1)根据B点的坐标即可求得AC的长度.(2)首先根据已知条件证明,再根据相似比例计算DF、CD的长度即可计算出D点的坐标,再证明,根据EF=DF,即可计算的DE的长度.(3)根据等腰三角形的性质,分类讨论第一种情况当时;第二种情况当时;第三种情况当时,分别计算即可.【详解】解:(1)(2),由折叠可得:,.∵四边形OABC是矩形,∴拆痕DE的长为(3)由(2)可知,,若以P、D、E、Q为顶点的四边形是菱形,则必为等腰三角形。当时,可知,此时PE为对角线,可得当时,可知,此时DP为对角线,可得;当时,P与C重合,Q与A重合,综上所述,满足条件的点Q坐标为本题主要考查菱形的基本性质,难点在于第三问中的等腰三角形的分类讨论,根据等腰三角形的腰进行分类,再根据腰相等进行计算.18、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.试题解析:(1)证明:∵AB∥DE,∴∠B=∠DEF,∵BE=EC=CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.(2)证明:∵△ABC≌△DEF,∴AC=DF,∵∠ACB=∠F,∴AC∥DF,∴四边形ACFD是平行四边形,∴AD∥CF,AD=CF,∵EC=CF,∴AD∥EC,AD=CE,∴四边形AECD是平行四边形.一、填空题(本大题共5个小题,每小题4分,共20分)19、50:7【解析】
先将2m转换为200cm,再代入计算即可.【详解】∵AB=2m=200cm,CD=28cm,∴AB:CD=200:28=50:7.故答案为50:7.本题考查比例线段,学生们掌握此定理即可.20、.【解析】
根据乘方的定义计算即可.【详解】(﹣)2=.故答案为:.本题考查了乘方的意义,一般地,n个相同的因数a相乘,即a·a·a·…·a计作an,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数.21、﹣1【解析】
因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【详解】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.故答案是:m=﹣1.考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.22、5【解析】
由平均数可求解a的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.本题考查了平均数和中位数的概念.23、1【解析】
直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.【详解】解:∵b=+﹣2,∴∴1-2a=0,
解得:a=,则b=-2,
故ab=()-2=1.
故答案为1.此题主要考查了二次根式有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农民工工资拖欠专项整改协议3篇
- 减肥方法及其效果研究综述
- 二零二五年度房产代持保密协议范本3篇
- 新生儿心肺复苏知识
- 临床引起双硫仑样反应特点、诊断标准、分度、鉴别诊断及处理要点
- 二零二五年度信息安全管理责任承诺(含应急预案)2篇
- 二零二五年度his系统与药品供应链系统对接合同
- 河南省商丘市(2024年-2025年小学六年级语文)统编版质量测试(上学期)试卷及答案
- 黑龙江大庆市(2024年-2025年小学六年级语文)部编版能力评测((上下)学期)试卷及答案
- 贵州商学院《概率论与随机过程》2023-2024学年第一学期期末试卷
- 2022年中国农业银行(广东分行)校园招聘笔试试题及答案解析
- 品牌管理第五章品牌体验课件
- 基于CAN通讯的储能变流器并机方案及应用分析报告-培训课件
- 外科医师手术技能评分标准
- 保姆级别CDH安装运维手册
- 菌草技术及产业化应用课件
- GB∕T 14527-2021 复合阻尼隔振器和复合阻尼器
- 隧道二衬、仰拱施工方案
- 颤病(帕金森病)中医护理常规
- 果胶项目商业计划书(模板范本)
- 旋挖钻成孔掏渣筒沉渣处理施工工艺
评论
0/150
提交评论