2024-2025学年广东省茂名市茂南区九上数学开学统考模拟试题【含答案】_第1页
2024-2025学年广东省茂名市茂南区九上数学开学统考模拟试题【含答案】_第2页
2024-2025学年广东省茂名市茂南区九上数学开学统考模拟试题【含答案】_第3页
2024-2025学年广东省茂名市茂南区九上数学开学统考模拟试题【含答案】_第4页
2024-2025学年广东省茂名市茂南区九上数学开学统考模拟试题【含答案】_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年广东省茂名市茂南区九上数学开学统考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.书中有下列问題:“今有邑方不知大小,各中开门,出北门八十步有木,出西门二百四十五步见木,问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,ME=80步,NF=245步,则正方形的边长为()A.280步 B.140步 C.300步 D.150步2、(4分)如图,在平行四边形ABCD中,BE=2,AD=8,DE平分∠ADC,则平行四边形的周长为()A.14 B.24 C.20 D.283、(4分)在平面直角坐标系中,已知点A(O,1),B(1,2),点P在轴上运动,当点P到A、B两点的距离之差的绝对值最大时,该点记为点P1,当点P到A、B两点的距离之和最小时,该点记为点P2,以P1P2为边长的正方形的面积为A.1 B. C. D.54、(4分)数据-2,-1,0,1,2的方差是()A.0 B. C.2 D.45、(4分)若,则的值为()A.1 B.-1 C.-7 D.76、(4分)下列从左到右的变形中,是因式分解的是()A.m2-9=(x-3) B.m2-m+1=m(m-1)+1 C.m2+2m=m(m+2) D.(m+1)2=m2+2m+17、(4分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A.3100 B.4600 C.3000 D.36008、(4分)给出下列几组数:①4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是().A.①②B.③④C.①③④D.④二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.10、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们次还原魔方所用时间的平均值与方差:甲乙丙丁(秒)要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.11、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.12、(4分)计算:=_____________.13、(4分)如果一个n边形的内角和等于它的外角和的3倍,则n=______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在6×6的网格中,每个小正方形的边长为1,请按要求画出格点四边形(四个顶点都在格点上的四边形叫格点四边形).(1)在图1中,画出一个非特殊的平行四边形,使其周长为整数.(2)在图2中,画出一个特殊平行四边形,使其面积为6且对角线交点在格点上.注:图1,图2在答题纸上.15、(8分)如图,将沿过点的直线折叠,使点落到边上的处,折痕交边于点,连接.(1)求证:四边形是平行四边形;(2)若平分,求证:.16、(8分)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.17、(10分)如图,在四边形中,,点为的中点.(1)求证:四边形是菱形;(2)联结,如果平分,求的长.18、(10分)如图,反比例函数y1=与一次函数y2=mx+n相交于A(﹣1,2),B(4,a)两点,AE⊥y轴于点E,则:(1)求反比例函数与一次函数的解析式;(2)若y1≤y2则直接写出x的取值范围;(3)若M为反比例函数上第四象限内的一个动点,若满足S△ABM=S△AOB,则求点M的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,菱形ABCD的周长为20,对角线AC与BC相交于点O,AC=8,则BD=________.20、(4分)甲、乙两人进行射击比赛,在相同条件下各射击12次,他们的平均成绩各为8环,12次射击成绩的方差分别是:S甲=3,S乙=2.5,成绩较为稳定的是__________.(填“甲”或“乙”)21、(4分)当x分别取值,,,,,1,2,,2007,2008,2009时,计算代数式的值,将所得的结果相加,其和等于______.22、(4分)关于x的方程有增根,则m的值为_____23、(4分)如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,若图1正方形中MN=1,则CD=____.二、解答题(本大题共3个小题,共30分)24、(8分)如图1,在平面直角坐标系中,一次函数的图象与轴,轴分别交于点,点,过点作轴,垂足为点,过点作轴,垂足为点,两条垂线相交于点.(1)线段,,的长分别为_______,_________,_________;(1)折叠图1中的,使点与点重合,再将折叠后的图形展开,折痕交于点,交于点,连接,如图1.①求线段的长;②在轴上,是否存在点,使得为等腰三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由.25、(10分)如图1,点O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=OF,求的值.26、(12分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=1∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴MEAN而据题意知AM=AN,∴AM解得:AM=140,∴AD=2AM=280步,故选:A.本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.2、D【解析】

根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,AB=CD,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵AD=8,BE=2,∴CE=BC﹣BE=8﹣2=6,∴CD=AB=6,∴▱ABCD的周长=6+6+8+8=1.故选D.本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD是解题的关键.3、C【解析】

由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA-PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA-PB|=AB,即|PA-PB|≤AB,所以当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可得到点P1的坐标;点A关于x轴的对称点为A',求得直线A'B的解析式,令y=0,即可得到点P2的坐标,进而得到以P1P2为边长的正方形的面积.【详解】由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得,∴y=x+1,令y=0,则0=x+1,解得x=-1.∴点P1的坐标是(-1,0).∵点A关于x轴的对称点A'的坐标为(0,-1),设直线A'B的解析式为y=k'x+b',∵A'(0,-1),B(1,2),,解得,∴y=3x−1,令y=0,则0=3x−1,解得x=,∴点P2的坐标是(,0).∴以P1P2为边长的正方形的面积为(+1)2=,本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.4、C【解析】

先求出这组数据的平均数,再根据方差的公式进行计算即可.【详解】解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:.故选C.本题考查方差的计算.5、D【解析】

首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.【详解】由题意,得:,

解得;

所以x-y=4-(-3)=7;

故选:D.此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.6、C【解析】

把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式,根据以上内容逐个判断即可.【详解】把一个多项式化成几个整式的积的形式,叫把这个多项式因式分解,也叫分解因式,A、等号前后的字母不一样,故本选项错误;B、不是因式分解,故本选项错误;C、左右相等,且是因式分解,故本选项正确;D、不是因式分解,故本选项错误;故选C.本题考查了因式分解的定义的应用,能理解因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫分解因式.7、B【解析】

连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【详解】连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,AD=∴△AGD≌△GDC(SAS)∴AG=CG,在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF-BA-AG-GE,=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m),故选B.本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF,DE=GE.8、D【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+(2mn)2=(m2+n2)2,且m>n>0,∴能组成直角三角形.故选D.点睛:本题关键在于勾股定理逆定理的运用.二、填空题(本大题共5个小题,每小题4分,共20分)9、8【解析】

先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【详解】(),由勾股定理得(),则玻璃棒露在容器外的长度的最小值是().故答案为.考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.10、丁【解析】

据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:因为乙和丁的方差最小,但丁平均数最小,

所以丁还原魔方用时少又发挥稳定.

故应该选择丁同学.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11、【解析】

根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【详解】解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),故答案为:(-2,-1).本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12、【解析】

根据二次根式的性质和二次根式的化简,可知==.故答案为.此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.13、1【解析】

根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)详见解析.【解析】

(1)利用勾股定理得出符合题意的四边形;(2)利用平行四边形的面积求法得出符合题意的答案.【详解】(1)如图1,平行四边形ABCD即为所求图1(2)如图2,菱形ABCD即为所求图2此题主要考查了应用设计与作图以及勾股定理确定线段长度,正确借助网格得出是解题关键.15、(1)详见解析;(1)详见解析.【解析】

(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形;(1)利用平行线的性质结合勾股定理得出答案.【详解】(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB∥DC,∴CE∥D′B,∴四边形BCED′是平行四边形;(1)∵BE平分∠ABC,∴∠CBE=∠EBA,∵AD∥BC,∴∠DAB+∠CBA=180°,∵∠DAE=∠BAE,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∴AB1=AE1+BE1.此题主要考查了平行四边形的判定与性质以及勾股定理等知识,得出四边形DAD′E是平行四边形是解题关键.16、(1)见解析;(2)见解析【解析】试题分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.考点:全等三角形的判定;菱形的判定;平行四边形的性质.17、(1)见解析;(2)2【解析】

(1)根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.(2)此题有两种解决方法,方法一:证明四边形是等腰梯形,方法二:证明∠BDC为直角.【详解】(1)证明:,点为的中点,,又四边形是平行四边形,四边形是菱形(2)解:方法一四边形是梯形.平分四边形是菱形,.四边形是等腰梯形,方法二:平分,即,四边形是菱形,,即,此题考查菱形的判定与性质,解题关键在于结结合题意运用菱形的判定与性质即可.18、(1),;(2)x≤﹣1或0<x≤1;(3)点M的坐标(2,﹣1)或(3+,).【解析】

(1)先将点A代入反比例函数解析式中即可求出反比例函数的解析式,然后根据反比例函数的解析式求出点B的坐标,再利用待定系数法即可求出一次函数的解析式;(2)根据图象及两个函数的交点即可得出x的取值范围;(3)先求出一次函数与y轴的交点坐标,然后利用S△ABM=S△AOB和平移的相关知识分两种情况:向上平移或向下平移两种情况,分别求出平移后的直线与反比例函数在第四象限的交点即可.【详解】(1)把A(﹣1,2)代入反比例函数得,k=﹣2∴反比例函数的关系式为,把B(1,a)代入得,,∴B(1,)把A(﹣1,2),B(1,)代入一次函数得,解得∴一次函数的关系式为:(2)当时,反比例函数的图象在一次函数图象的下方,结合图象可知,当,自变量x的取值范围为:x≤﹣1或0<x≤1.(3)当时,∴与y轴的交点坐标为(0,),如图:∵S△ABM=S△AOB∴根据平行线间的距离处处相等,可将一次函数进行平移个单位,则平移后的直线与反比例函数在第四象限的交点即为所求的M点.将向下平移个单位过O点,关系式为:,解得,∵M在第四象限,∴M(2,﹣1),将向上平移个单位后直线的关系式为:,解得,∵M在第四象限,∴,综上所述,点M的坐标(2,﹣1)或,本题主要考查反比例函数,一次函数与几何综合,掌握待定系数法及平移的相关知识和二元一次方程组的解法是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】分析:根据菱形的四条边都相等可得AB=5,根据菱形的两条对角线互相垂直且平分可得AC⊥BD,AO=AC=4,BO=DO,再利用勾股定理计算出BO长,进而可得答案.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=,AC=4,BO=DO,AD=AB=DC=BC,∵菱形ABCD的周长为20,∴AB=5,∴BO==3,∴DO=3,∴DB=1,故答案为:1.点睛:此题主要考查了菱形的性质,关键是掌握菱形的性质

①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.20、乙【解析】

根据方差的意义,比较所给的两个方差的大小即可得出结论.【详解】∵,乙的方差小,∴本题中成绩较为稳定的是乙,故填乙.本题考查方差在实际中的应用.方差反应一组数据的稳定程度,方差越大这组数据越不稳定,方差越小,说明这组数据越稳定.21、1【解析】

先把和代入代数式,并对代数式化简,得到它们的和为1,然后把代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】因为,即当x分别取值,为正整数时,计算所得的代数式的值之和为1;而当时,.因此,当x分别取值,,,,,1,2,,2117,2118,2119时,计算所得各代数式的值之和为1.故答案为:1.本题考查的是代数式的求值,本题的x的取值较多,并且除外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.22、-1【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘(x−3),得2−x−m=2(x−3)∵原方程增根为x=3,∴把x=3代入整式方程,得2−3−m=0,解得m=−1.故答案为:−1.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.23、【解析】

根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∵四边形MNQK是正方形,且MN=1,∴∠MNK=45°,在Rt△MNO中,OM=ON=,∵NL=PL=OL=,∴PN=,∴PQ=,∵△PQH是等腰直角三角形,∴PH=FF'==BE,过G作GG'⊥EF',∴GG'=AE=MN=,∴CD=AB=AE+BE=+=.故答案为:.本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.二、解答题(本大题共3个小题,共30分)24、(1)8;4;;(1)①线段AD的长为2;②点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).【解析】

(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,利用矩形的性质及勾股定理,可得出AB,BC,AC的长;

(1)①设AD=a,则CD=a,BD=8-a,在Rt△BCD中,利用勾股定理可求出a的值,进而可得出线段AD的长;

②设点P的坐标为(0,t),利用两点间的距离公式可求出AD1,AP1,DP1的值,分AP=AD,AD=DP及AP=DP三种情况,可得出关于t的一元二次方程(或一元一次方程),解之即可得出t的值,进而可得出点P的坐标.【详解】解:(1)如图:当x=0时,y=-1x+8=8,

∴点C的坐标为(0,8);

当y=0时,-1x+8=0,解得:x=4,

∴点A的坐标为(4,0).

由已知可得:四边形OABC为矩形,

∴AB=OC=8,BC=OA=4,AC=.

故答案为:8;4;.

(1)①设AD=a,则CD=a,BD=8-a.

在Rt△BCD中,CD1=BC1+BD1,即a1=3+(8-a)1,

解得:a=2,

∴线段AD的长为2.②存在,如图:设点P的坐标为(0,t).

∵点A的坐标为(4,0),点D的坐标为(4,2),

∴AD1=12,AP1=(0-4)1+(t-0)1=t1+16,DP1=(0-4)1+(t-2)1=t1-10t+3.

当AP=AD时,t1+16=12,

解得:t=±3,

∴点P的坐标为(0,3)或(0,-3);

当AD=DP时,12=t1-10t+3,

解得:t1=1,t1=8,

∴点P的坐标为(0,1)或(0,8);

当AP=DP时,t1+16=t1-10t+3,

解得:t=,

∴点P的坐标为(0,).

综上所述:在y轴上存在点P,使得△APD为等腰三角形,点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).本题考查了一次函数图象上点的坐标特征、矩形的性质、勾股定理、等腰三角形的性质、两点间的距离以及解一元二次方程(或解一元一次方程),解题的关键是:(1)利用一次函数图象上点的坐标特征求出点A,C的坐标;(1)①通过解直角三角形,求出AD的长;②分AP=AD,AD=DP及AP=DP三种情况,找出关于t的一元二次方程(或一元一次方程).25、(1)45°;(2)证明见解析;(3)【解析】

(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴OB=OC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论