2025届福建省漳州市龙海市第二中学数学八年级第一学期期末复习检测试题含解析_第1页
2025届福建省漳州市龙海市第二中学数学八年级第一学期期末复习检测试题含解析_第2页
2025届福建省漳州市龙海市第二中学数学八年级第一学期期末复习检测试题含解析_第3页
2025届福建省漳州市龙海市第二中学数学八年级第一学期期末复习检测试题含解析_第4页
2025届福建省漳州市龙海市第二中学数学八年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省漳州市龙海市第二中学数学八年级第一学期期末复习检测试题复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=AD=DC,∠BAD=26°,则∠C的度数是()A.36° B.77° C.64° D.38.5°2.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个 B.2个 C.3个 D.4个3.如图所示,将三角尺的直角顶点放在直尺的一边上,,,则等于()A. B. C. D.4.关于函数y=2x,下列结论正确的是()A.图象经过第一、三象限B.图象经过第二、四象限C.图象经过第一、二、三象限D.图象经过第一、二、四象限5.下列四个命题中,真命题的个数有()①数轴上的点和有理数是一一对应的;②中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,-3)关于y轴对称的点的坐标是(-2,-3);④两条直线被第三条直线所截,内错角相等.A.1个 B.2个 C.3个 D.4个6.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS7.下列计算,正确的是()A. B. C. D.8.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+39.在直角坐标系中,点与点关于轴对称,则点的坐标为()A. B. C. D.10.如图,等腰三角形ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则下列结论错误的是()A.∠EBC为36° B.BC=AEC.图中有2个等腰三角形 D.DE平分∠AEB11.下列方程:①;②;③;④;⑤;⑥,其中是二元一次方程的是()A.① B.①④ C.①③ D.①②④⑥12.如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()A.1个; B.2个;C.3个; D.4个.二、填空题(每题4分,共24分)13.一个正方形的边长为3,它的边长减少后,得到新正方形的周长为,与之间的函数表达式为__________.14.如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.15.已知a+b=3,ab=2,则a2b+ab2=_______.16.如图,直角坐标系中,直线和直线相交于点,则方程组的解为__________.17.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为_________.18.若关于x的分式方程的解为正数,则满足条件的非负整数k的值为____.三、解答题(共78分)19.(8分)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.20.(8分)为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.组别睡眠时间根据图表提供的信息,回答下列问题:(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.21.(8分)问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.22.(10分)已知点和关于轴对称且均不在轴上,试求的值.23.(10分)已知某种商品去年售价为每件元,可售出件.今年涨价成(成),则售出的数量减少成(是正数).试问:如果涨价成价格,营业额将达到,求.24.(10分)化简求值:,其中,25.(12分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.26.如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.(1)利用尺规作图作出点D,不写作法但保留作图痕迹.(2)若△ABC的底边长5,周长为21,求△BCD的周长.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据等腰三角形两底角相等求出∠B=∠ADB,根据等边对等角可得∠C=∠CAD,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB=AD,∠BAD=26°,∴∠B=(180°-∠BAD)=(180°-26°)=77°,∵AD=DC,∴∠C=∠CAD,在△ABC中,∠BAC+∠B+∠C=180°,即26°+∠C+∠C+77°=180°,解得:∠C=38.5°,故选:D.【点睛】本题主要考查等腰三角形的性质:等腰三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.2、B【解析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【详解】如图,满足条件的所有点P的个数为1.故选B.【点睛】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.3、A【分析】先根据平行线的性质得到,然后根据三角形外角的性质有,最后利用即可求解.【详解】如图∵,.,∴.故选:A.【点睛】本题主要考查平行线的性质及三角形外角的性质,掌握平行线的性质及三角形外角的性质是解题的关键.4、A【分析】分别根据正比例函数的图象及性质进行解答即可.【详解】解:A.函数y=2x中的k=2>0,则其图象经过第一、三象限,故本选项符合题意;B.函数y=2x中的k=2>0,则其图象经过第一、三象限,故本选项不符合题意;C.函数y=2x中的k=2>0,则其图象经过第一、三象限,故本选项不符合题意;D.函数y=2x中的k=2>0,则其图象经过第一、三象限,故本选项不符合题意.故选:A.【点睛】本题考查的是正比例函数的图象及性质,熟知正比例函数的图象及性质是解答此题的关键.5、A【分析】根据命题的真假性进行判断即可得解.【详解】①数轴上的点和实数是一一对应的,故原命题错误,是假命题;②中,已知两边长分别是3和4,则第三条边长为5或,故原命题错误,是假命题;③在平面直角坐标系中点关于y轴对称的点的坐标是,故原命题正确,是真命题;④两条平行直线被第三条直线所截,内错角相等,故原命题题错误,是假命题.所以真命题只有1个,故选:A.【点睛】本题主要考查了相关命题真假性的判断,熟练掌握相关命题涉及的知识点是解决本题的关键.6、B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、B【解析】解:A.,故A错误;B.,正确;C.,故C错误;D.,故D错误.故选B.8、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.9、B【解析】根据关于轴对称的点的坐标特点是横坐标相等,纵坐标相反确定点B的坐标.【详解】解:点与点关于轴对称,所以点B的坐标为,故选:B【点睛】本题考查了轴对称与坐标的关系,理解两点关于x或y轴对称的点的坐标变化规律是解题关键.10、C【解析】根据等腰三角形的性质和线段垂直平分线的性质一一判断即可.【详解】A.∵等腰△ABC的底角为72°,∴∠A=180°﹣72°×2=36°.∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°.故A正确;B.∵∠ABE=∠A=36°,∴∠BEC=72°.∵∠C=72°,∴∠BEC=∠C,∴BE=BC.∵AE=BE,∴BC=AE,故B正确;C.∵BC=BE=AE,∴△BEC、△ABE是等腰三角形.∵△ABC是等腰三角形,故一共有3个等腰三角形,故C错误;D.∵AE=BE,DE⊥AB,∴DE平分∠AEB.故D正确.故选C.【点睛】本题考查了线段垂直平分线的性质,以及等腰三角形的判定和性质,关键是掌握等边对等角.11、B【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程来进行解答即可;【详解】解:①该方程中含有两个未知数,并且未知数的项的次数都是1的整式方程,所以它是二元一次方程;②该方程是分式方程,所以它不是二元一次方程;③该方程中的未知数的次数是2,所以它不是二元一次方程;④由原方程得到2x+2y=0,该方程中含有两个未知数,并且未知数的项的次数都是1的整式方程,所以它是二元一次方程;⑤该方程中含有一个未知数,所以它不是二元一次方程;⑥该方程是分式方程,所以它不是二元一次方程;综上所述,属于二元一次方程的是:①,④;故答案是:B.【点睛】本题主要考查了二元一次方程的定义,掌握二元一次方程的定义是解题的关键.12、C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.

①∵AC⊥BD,∴新的四边形成为矩形,符合条件;②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.∵C△ABO=C△CBO,∴AB=BC.根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.∵∠DAO=∠CBO,∴∠ADO=∠DAO.∴AO=OD.∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO,BO=DO,∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选C.【点睛】本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.二、填空题(每题4分,共24分)13、y=-4x+12【分析】根据正方形的周长公式:正方形的周长=4×边长即可得出结论.【详解】解:根据正方形的周长公式,y=4(3-x)=-4x+12故答案为:y=-4x+12【点睛】此题考查的是求函数的解析式,掌握正方形的周长公式:正方形的周长=4×边长是解决此题的关键.14、1.【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,

∵四边形OABC是矩形,

∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,

∵CD=1DB,

∴CD=6,BD=2,

∴CD=AB,

∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,

∴A′D=AD,A′E=AE,

在Rt△A′CD与Rt△DBA中,,∴Rt△A′CD≌Rt△DBA(HL),

∴A′C=BD=2,

∴A′O=4,

∵A′O2+OE2=A′E2,

∴42+OE2=(8-OE)2,

∴OE=1,

故答案是:1.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.15、6【分析】先对a2b+ab2进行因式分解,a2b+ab2=ab(a+b),再将值代入即可求解.【详解】∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故答案是:6.【点睛】考查了提公因式法分解因式,解题关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.16、【分析】根据题意,将代入中求出m即可得到方程组的解.【详解】将代入中得,则∴∵直线和直线相交于点∴的解为.故答案为:.【点睛】本题主要考查了一次函数图像的交点与二元一次方程组的关系,熟练掌握相关知识是解决本题的关键.17、(-3,-2).【解析】试题解析:∵+(b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).考点:1.关于x轴、y轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.18、1.【分析】首先解分式方程,然后根据方程的解为正数,可得x>1,据此求出满足条件的非负整数K的值为多少即可.【详解】∵,∴.∵x>1,∴,∴,∴满足条件的非负整数的值为1、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;∴满足条件的非负整数的值为1.故答案为:1.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于1的值,不是原分式方程的解.三、解答题(共78分)19、(1)证明见解析(2)∠MBC=∠F+∠FEC,证明见解析【解析】(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.【详解】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.20、(1),对应扇形的圆心角度数为18;(2)该区八年级学生睡眠时间合格的共有人;(3)该区八年级学生的平均睡眠时间为小时.【分析】(1)根据各部分的和等于1即可求得,然后根据圆心角的度数=360×百分比求解即可;(2)合格的总人数=八年级的总人数×八年级合格人数所占百分比;(3)分别计算B、C、D三组抽取的学生数,然后根据平均数的计算公式即可求得抽取的B、C、D三组学生的平均睡眠时间,即可估计该区八年级学生的平均睡眠时间.【详解】(1)根据题意得:;

对应扇形的圆心角度数为:360×5%=18;(2)根据题意得:(人),则该区八年级学生睡眠时间合格的共有人;(3)∵抽取的D组的学生有15人,∴抽取的学生数为:(人),∴B组的学生数为:(人),C组的学生数为:(人),∴B、C、D三组学生的平均睡眠时间:(小时),该区八年级学生的平均睡眠时间为小时.【点睛】本题主要考查的是扇形统计图的认识以及用样本估计总体,弄清题中的数据是解本题的关键.21、(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;

(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;

(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=60°,

∴∠ACD=∠BCE.

在△ACD和△BCE中,

∴△ACD≌△BCE(SAS),

∴AD=BE;

(2)如图1,∵△ACD≌△BCE,

∴∠ADC=∠BEC,

∵△DCE为等边三角形,

∴∠CDE=∠CED=60°,

∵点A,D,E在同一直线上,

∴∠ADC=120°,

∴∠BEC=120°,

∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,

∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,

∴∠ACB-∠DCB=∠DCE-∠DCB,

即∠ACD=∠BCE,

在△ACD和△BCE中,,

∴△ACD≌△BCE(SAS),

∴BE=AD,∠BEC=∠ADC,

∵点A,D,E在同一直线上,

∴∠ADC=180-45=135°,

∴∠BEC=135°,

∴∠AEB=∠BEC-∠CED=135°-45°=90°,

故答案为90°;

(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,

∴CM=DM=EM,

∴DE=DM+EM=2CM,

∵△ACD≌△BCE(已证),

∴BE=AD,

∴AE=AD+DE=BE+2CM,

故答案为AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论