2025届江苏省扬州市江都区数学八上期末联考模拟试题含解析_第1页
2025届江苏省扬州市江都区数学八上期末联考模拟试题含解析_第2页
2025届江苏省扬州市江都区数学八上期末联考模拟试题含解析_第3页
2025届江苏省扬州市江都区数学八上期末联考模拟试题含解析_第4页
2025届江苏省扬州市江都区数学八上期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省扬州市江都区数学八上期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A.AE⊥BC B.BE=CE C.∠ABD=∠DBE D.△ABD≌△ACD3.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10-5C.0.75×10-4D.75×10-64.下列各式不能分解因式的是()A. B. C. D.5.下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C.25=±5 D.6.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A. B. C. D.7.下列各式不是最简二次根式的是().A. B. C. D.8.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.∠B=∠C D.BE=CD9.一个多边形的各个内角都等于120°,则它的边数为()A.3 B.6 C.7 D.810.把通分,下列计算正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在梯形ABCD中,AD∥BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为_____.12.已知:,,那么________________.13.如图,ΔABC的面积为8cm2,AP垂直∠B的平分线BP于P,则ΔPBC的面积为________.14.已知,在中,,,为中点,则__________.15.如图,AB=AC,BD⊥AC,∠CBD=α,则∠A=_____(用含α的式子表示).16.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为__.17.要使分式有意义,x的取值应满足______.18.如图,在平面直角坐标系中,已知点A(2,-2),在坐标轴上确定一点B,使得△AOB是等腰三角形,则符合条件的点B共有________个.三、解答题(共66分)19.(10分)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.20.(6分)如图,在平面直角坐标系中,A(-2,4),B(-3,1),C(1,-2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C′;(2)写出点A′、B′、C′的坐标;(3)连接OB、OB′,请直接回答:①△OAB的面积是多少?②△OBC与△OB′C′这两个图形是否成轴对称.21.(6分)如图,在平面直角坐标系中,一次函数的图象与轴的交点为,与轴的交点为,且与正比例函数的图象交于点.(1)求的值及一次函数的解析式;(2)观察函数图象,直接写出关于的不等式的解集.22.(8分)解方程组或不等式组:(l)(2)解不等式组,并把解集在数轴上表示出来.23.(8分)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).备用图1备用图224.(8分)已知,(1)求的值;(2)求的值.25.(10分)如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.26.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD=,求线段AB的长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,是中心对称图形,故本选项符合题意;

B、是轴对称图形,不是中心对称图形,故本选项不符合题意;

C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

D、不是轴对称图形,是中心对称图形,故本选项不符合题意.

故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【分析】根据等腰三角形的性质以及三角形全等的判定定理,逐一判断选项,即可.【详解】∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;∴BE=CE,故选项B正确;在△ABD和△ACD中,∵,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.【点睛】本题主要考查等腰三角形的性质以及三角形全等的判定定理,掌握等腰三角形三线合一,是解题的关键.3、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000075=7.5×10-5.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、C【解析】选项A.=2x(x-2).选项B.=(x+)2.选项C.,不能分.选项D.=(1-m)(1+m).故选C.5、D【详解】解:A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、25=5,表示25的算术平方根式5,25≠±5,故本选项错误;D、3-8故选D.【点睛】本题考查立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法.6、D【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.7、A【分析】最简二次根式:分母没有根号;被开方数不能再进行开方;满足以上两个条件为最简二次根式,逐个选项分析判断即可.【详解】A.不是最简二次根式;B.是最简二次根式;C.是最简二次根式;D.是最简二次根式;故选A【点睛】本题考查最简二次根式,熟练掌握最简二次根式的要求是解题关键.8、D【分析】判定全等三角形时,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【详解】解:A、∵在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;B、∵AB=AC,BD=CE,∴AD=AE,在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;C、∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故本选项不符合题意;D、根据AB=AC,BE=CD和∠A=∠A不能推出△ABE≌△ACD,故本选项符合题意;故选:D.【点睛】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.9、B【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选B.考点:多边形内角与外角.10、B【分析】根据分式通分的方法即可求解.【详解】把通分,最简公分母为,故故选B.【点睛】此题主要考查分式通分,解题的关键是熟知分式通分的方法.二、填空题(每小题3分,共24分)11、1【分析】首先过点A作AE∥CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD是平行四边形,△ABE是等边三角形,继而求得答案.【详解】解:过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∠B=180°﹣∠BAD=180°﹣120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=1.故答案为:1.【点睛】考核知识点:平行四边形性质.作辅助线是关键.12、10【解析】∵(a+b)2=72=49,∴a2-ab+b2=(a+b)2-3ab=49-39=10,故答案为10.13、【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:延长AP交BC于E,如图所示:∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°,在△APB和△EPB中,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=4cm1,故答案为4cm1.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE=S△ABC.14、1【分析】先画出图形,再根据直角三角形的性质求解即可.【详解】依题意,画出图形如图所示:,点D是斜边AB的中点(直角三角形中,斜边上的中线等于斜边的一半)故答案为:1.【点睛】本题考查了直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,这是常考知识点,需重点掌握,做这类题时,依据题意正确图形往往是关键.15、2α.【分析】根据已知可表示得两底角的度数,再根据三角形内角和定理不难求得∠A的度数;【详解】解:∵BD⊥AC,∠CBD=α,∴∠C=(90﹣α)°,∵AB=AC,∴∠ABC=∠C=(90﹣α)°,∴∠ABD=90﹣α﹣α=(90﹣2α)°∴∠A=90°﹣(90﹣2α)°=2α;故答案为:2α.【点睛】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.16、(-3,2)【解析】试题分析:作CD⊥x轴于D,根据条件可证得ΔACD≌ΔBAO,故AD=OB=1,CD=OA=2,所以OD=3,所以C(-3,2).考点:1.辅助线的添加;2.三角形全等.17、x≠1【解析】根据分式有意义的条件——分母不为0进行求解即可得.【详解】要使分式有意义,则:,解得:,故x的取值应满足:,故答案为:.【点睛】本题考查了分式有意义的条件,熟知分式有意义的条件是分母不为0是解题的关键.18、1【分析】OA是等腰三角形的一边,确定第三点B,可以分OA是腰和底边两种情况进行讨论即可.【详解】(1)若AO作为腰时,有两种情况,当A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,共有2个(除O点);当O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,有4个;(2)若OA是底边时,B是OA的中垂线与坐标轴的交点,有2个.以上1个交点没有重合的.故符合条件的点有1个.故答案为:1.【点睛】本题考查了坐标与图形的性质和等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底,哪边是腰时,应在符合三角形三边关系的前提下分类讨论.三、解答题(共66分)19、(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.20、(1)见解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC与△OB′C′这两个图形关于y轴成轴对称.【分析】(1)先确定A、B、C关于y轴的对称点A′、B′、C′,然后再顺次连接即可;(2)直接根据图形读出A′、B′、C′的坐标即可;(3)①运用△OAB所在的矩形面积减去三个三角形的面积即可;②根据图形看△OBC与△OB′C′是否有对称轴即可解答.【详解】解:(1)如图;△A′B′C′即为所求;(2)如图可得:A′(2,4).B′(3,1).C′(-1,-2);(3)①△OAB的面积为:4×3-×3×1-×4×2-×3×1=5;②∵△OBC与△OB′C′这两个图形关于y轴成轴对称∴△OBC与△OB′C′这两个图形关于y轴成轴对称.【点睛】本题主要考查了轴对称变换和不规则三角形面积的求法,作出△ABC关于y轴的对称图形△A′B′C′以及运用拼凑法求不规则三角形的面积成为解答本题的关键.21、(1),;(2)【分析】(1)将代入正比例函数即可求出m,再将A,C坐标代入,求出k,b的值,即可得一次函数解析式;(2)观察图像,当正比例函数在一次函数图象上方时,对应x的取值范围,即为不等式的解集.【详解】(1)将代入正比例函数得,解得,∴将,代入得:,解得∴一次函数解析式为;(2)由图像得,当正比例函数在一次函数图象上方时,,∴不等式的解集为:.【点睛】本题考查求一次函数解析式,一次函数与不等式的关系,熟练掌握待定系数法求函数解析式,掌握根据交点判断不等式解集是解题的关键.22、(1);(2),见解析【分析】(1)将方程①变形得到y=3x-2,再利用代入法解方程组;(2)分别计算每个不等式,即可得到不等式组的解集.【详解】(1),由①得:y=3x-2③,将③代入②得,把代入③得,方程组的解为;(2),解①式得:,解②式得:,将解集表示在数轴上,如图:.【点睛】此题考查解题能力,(1)考查解二元一次方程组的能力,根据方程组的特点选择代入法或加减法是解题的关键;(2)考查解不等式组的能力,依据不等式的性质解每个不等式是正确解答的关键.23、(1)AB=;(1)C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(1)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=2,AD=1.∴在Rt△ABD中,AB=(1)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C1.②以B为直角顶点,过B作l1⊥AB交x轴于C3,交y轴于C2.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C3.(用三角板画找出也可)由图可知,C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.24、(1);(2).【分析】(1)根据二次根式有意义的条件可得关于a、b的不等式组,解不等式组即可求得答案;(2)把a+b的值代入所给式子,继而根据非负数的性质可得关于x、y的方程组,解方程组求解x、y的值代入所求式子进行计算即可.【详解】(1)由题意,由①得:a+b≥2020,由②得:a+b≤2020,所以a+b=2020;(2)∵a+b=2020,∴变为,∵,∴,∴,∴=7×2+(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论