吉林省长春六中学2025届数学八年级第一学期期末质量检测模拟试题含解析_第1页
吉林省长春六中学2025届数学八年级第一学期期末质量检测模拟试题含解析_第2页
吉林省长春六中学2025届数学八年级第一学期期末质量检测模拟试题含解析_第3页
吉林省长春六中学2025届数学八年级第一学期期末质量检测模拟试题含解析_第4页
吉林省长春六中学2025届数学八年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春六中学2025届数学八年级第一学期期末质量检测模拟试题量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列交通标志,不是轴对称图形的是()A. B. C. D.2.实数、、、在数轴上的位置如图所示,下列关系式不正确的是()A. B. C. D.3.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是A.AB=DE B.∠B=∠E C.EF=BC D.EF//BC4.如图是我市某景点6月份内日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温出现的频率是()A.3 B.0.5 C.0.4 D.0.35.我国的纸伞工艺十分巧妙,如图,伞圈D能沿着伞柄滑动,伞不论张开还是缩拢,伞柄AP始终平分同一平面内所成的角∠BAC,为了证明这个结论,我们的依据是A.SAS B.SSS C.AAS D.ASA6.下列计算正确的是()A.a2•a3=a5 B.(a3)2=a5 C.(3a)2=6a2 D.7.如图是一个三级台阶,它的每一级的长、宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬()A.13cm B.40cm C.130cm D.169cm8.如图,点在一条直线上,,那么添加下列一个条件后,仍不能够判定的是()A. B. C. D.9.在平面直角坐标系中,已知点A(2,m)和点B(n,-3)关于y轴对称,则的值是()A.-1 B.1 C.5 D.-510.估计的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间11.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)12.下面有4个汽车商标图案,其中是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.14.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.15.当满足条件________时,分式没有意义.16.人体中红细胞的直径约为,用科学记数法表示这个数应为_________.17.已知x,y满足方程的值为_____.18.质检员小李从一批鸡腿中抽查了只鸡腿,它们的质量如下(单位:):,,,,,,,这组数据的极差是_____.三、解答题(共78分)19.(8分)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查过程如下,请补充完整,收集数据:从甲、乙两个班各随机抽取10名学生进行身体素质测试测试成绩(百分制)如下:甲班:65,75,75,80,60,50,75,90,85,65乙班:90,55,80,70,55,70,95,80,65,70(1)整理描述数据:按如下分数段整理、描述这两组样本数据:成绩x人数班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100甲班13321乙班21m2n在表中:m=________;n=________.(2)分析数据:①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班75x75乙班7270y在表中:x=________,y=________.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀请估计乙班50名学生中身体素质为优秀的学生有________

人.20.(8分)先化简,再求值:,其中x=.21.(8分)定义:在平面直角坐标系中,对于任意两点,,若点满足,那么称点是点,的融合点.例如:,,当点满足,时,则点是点,的融合点.(1)已知点,,,请说明其中一个点是另外两个点的融合点.(2)如图,点,点是直线上任意一点,点是点,的融合点.①试确定与的关系式;②在给定的坐标系中,画出①中的函数图象;③若直线交轴于点.当为直角三角形时,直接写出点的坐标.22.(10分)计算:.23.(10分)先化简,再求值:,其中m=9.24.(10分)我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相対于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象问答问题:(1)①直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系②A与B比较,速度快;③如果一直追下去,那么B(填能或不能)追上A;④可疑船只A速度是海里/分,快艇B的速度是海里/分(2)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(3)15分钟内B能否追上A?为什么?(4)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?25.(12分)一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)画出该一次函数的图象;(3)判断(﹣5,﹣4)是否在这个函数的图象上?(4)求出该函数图象与坐标轴围成的三角形面积.26.解方程:.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【详解】根据轴对称图形的意义可知:A选项:是轴对称图形;B选项:是轴对称图形;C选项:不是轴对称图形;D选项:是轴对称图形;故选:C.【点睛】考查了轴对称图形的意义,解题关键利用了:判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.2、D【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.【详解】如下图:A.∵OA>OB,∴|a|>|b|,故A正确;B.,故B正确;C..|a-c|=|a+(-c)|=-a+c=c-a,故C正确;D.|d-1|=OD-OE=DE,|c-a|=|c+(-a)|=OC+OA,故D不正确.故答案为:D.【点睛】本题考查了实数与数轴,正确理解绝对值的意义是解题的关键.3、C【详解】试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解:∵AB∥DE,AC∥DF,∴∠A=∠D,AB=DE,则△ABC和△DEF中,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故D选项错误;故选C.考点:全等三角形的判定.4、D【分析】通过折线统计图和频率的知识求解.【详解】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30,26有3个,因而26出现的频率是:=0.3.故选D.【点睛】本题考查了频率的计算公式,理解公式是关键.5、B【分析】根据确定三角形全等的条件进行判定即可得解.【详解】解:根据伞的结构,AE=AF,伞骨DE=DF,AD是公共边,

∵在△ADE和△ADF中,∴△ADE≌△ADF(SSS),

∴∠DAE=∠DAF,

即AP平分∠BAC.

故选B.【点睛】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.6、A【解析】A、∵a2•a3=a5,故原题计算正确;B、∵(a3)2=a6,故原题计算错误;C、∵(3a)2=9a2,故原题计算错误;D、∵a2÷a8=a-6=故原题计算错误;故选A.7、C【解析】将台阶展开,如图所示,因为BC=3×10+3×30=120,AC=50,由勾股定理得:cm,故正确选项是C.8、D【分析】根据题意可知两组对应边相等,所以若要证明全等只需证明第三边也相等或证明两边的夹角相等或证明一边的对角是90°利用HL定理证明全等即可.【详解】解:,∴,又∵,当,可得∠B=∠E,利用SAS可证明全等,故A选项不符合题意;当,利用SSS可证明全等,故B选项不符合题意;当,利用HL定理证明全等,故C选项不符合题意;当,可得∠ACB=∠DFC,SSA无法证明全等,故D选项符合题意.故选:D.【点睛】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.9、D【分析】利用“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后代入代数式进行计算即可得解.【详解】解:∵A(2,m)和B(n,-3)关于y轴对称,∴m=-3,n=-2,∴m+n=-3-2=-1.故选:D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、B【分析】先根据二次根式的乘法法则得出的值,再估算即可【详解】解:∵∴故选:B【点睛】本题主要考查了二次根式的乘法和估算无理数的大小,掌握运算法则是解题的关键.11、B【分析】根据题意可设平面直角坐标系中任意一点P,其坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y).【详解】解:点P(3,1)关于x轴对称点的坐标是(3,﹣1).故选:B.【点睛】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.12、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:①②③都是轴对称图形,④不是轴对称图形,故选B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.二、填空题(每题4分,共24分)13、169或1【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【详解】分两种情况:

①当5和12为直角边长时,

由勾股定理得:第三边长的平方,即斜边长的平方;

②12为斜边长时,

由勾股定理得:第三边长的平方;

综上所述:第三边长的平方是169或1;

故答案为:169或1.【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.14、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】,是等腰三角形,度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).15、【分析】根据分式无意义的条件可直接进行求解.【详解】解:由分式没有意义,可得:,解得:;故答案为.【点睛】本题主要考查分式无意义的条件,熟练掌握分式不成立的条件是解题的关键.16、【分析】科学计数法的表示形式为,表示较小数时n为负整数,且等于原数中第一个非零数字前面所有零(包括小数点前边的零)的个数.【详解】解:.故答案为:.【点睛】本题考查了科学计数法,熟练掌握科学计数法的表示方法是解题的关键.17、【分析】根据二元一次方程组的加减消元法,即可求解.【详解】,①×5﹣②×4,可得:7x=9,解得:x=,把x=代入①,解得:y=,∴原方程组的解是:.故答案为:.【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.18、【分析】极差就是这组数据中的最大值与最小值的差.【详解】,,,,,,,这组数据的极差是:79-72=7故答案为:7【点睛】本题考查了极差的定义,掌握极差的定义是解题的关键.三、解答题(共78分)19、(1)1;2;(2)①75;70;②20【分析】(1)由收集的数据即可得;

(2)①根据众数和中位数的定义求解可得;

②用总人数乘以乙班样本中优秀人数所占比例可得.【详解】解:(1)由收集的数据得知:m=1,n=2故答案为:1.220(2)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x==75乙班成绩70分出现次数最多,所以的众数y=70故答案为:75,70;②估计乙班50名学生中身体素质为优秀的学生有50×=20(人)故答案为:20【点睛】此题考查众数,中位数,样本估计总体,熟练掌握众数、中位数以及用样本估计总体是解题的关键.20、;;【分析】根据分式的运算法则进行化简计算.【详解】原式当时,原式.【点睛】本题考查的是分式的运算,熟练掌握因式分解是解题的关键.21、(1)点C是点A、B的融合点;(2)①;②见详解;③点E的坐标为:(2,9)或(8,21)【分析】(1)根据融合点的定义,,即可求解;(2)①由题意得:分别得到x与t、y与t的关系,即可求解;②利用①的函数关系式解答;③分∠DTH=90°、∠TDH=90°、∠HTD=90°三种情况,分别求解即可.【详解】解:(1)x=,y=,故点C是点A、B的融合点;(2)①由题意得:x=,y=,则,则;②令x=0,y=;令y=0,x=,图象如下:③当∠THD=90°时,∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.∴t=(t+4),∴t=2,∴点E(2,9);当∠TDH=90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH与x轴不平行,故∠HTD不可能为90°;故点E的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.22、﹣1.【分析】利用二次根式的化简、有理数的乘方和二次根式的运算进行计算即可.【详解】原式==﹣1.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.23、【解析】试题分析:原式可以化为,当时,原式考点:完全平方公式、平方差公式的计算点评:本题考查的是完全平方公式、平方差公式的简单运算规律24、(1)①直线l1,②B,③能,④0.2,0.5;(2)k1、k2的实际意义是分别表示快艇B的速度和可疑船只的速度,S1=0.5t,S2=0.2t+5;(3)15分钟内B不能追上A,见解析;(4)B能在A逃入公海前将其拦截,见解析【分析】(1)①根据题意和图形,可以得到哪条直线表示B到海岸的距离与追赶时间之间的关系;②根据图2可知,谁的速度快;③根据图形和题意,可以得到B能否追上A;④根据图2中的数据可以计算出可疑船只A和快艇B的速度;(2)根据(1)中的结果和题意,可以得到k1、k2的实际意义,直接写出两个函数的表达式;(3)将t=15代入分别代入S1和S2中,然后比较大小即可解答本题;(4)将12代入S2中求出t的值,再将这个t的值代入S1中,然后与12比较大小即可解答本题.【详解】解:(1)①由已知可得,直线l1表示B到海岸的距离与追赶时间之间的关系;故答案为:直线l1;②由图可得,A与B比较,B的速度快,故答案为:B;③如果一直追下去,那么B能追上A,故答案为:能;④可疑船只A速度是:(7﹣5)÷10=0.2海里/分,快艇B的速度是:5÷10=0.5海里/分,故答案为:0.2,0.5;(2)由题意可得,k1、k2的实际意义是分别表示快艇B的速度和可疑船只的速度,S1=0.5t,S2=0.2t+5;(3)15分钟内B不能追上A,理由:当t=15时,S2=0.2×15+5=8,S1=0.5×15=7.5,∵8>7.5,∴15分钟内B不能追上A;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论