版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省乐清市虹桥镇第六中学数学八上期末质量检测模拟试题拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,,的垂直平分线交于点,垂足为点.若,则的长为()A. B. C. D.2.今年月日至月日,我市某学校组织八年级学生走进相距约的“济源市示范性综合实践基地”,开展“拓展、体验、成长”综合实践活动.出发时,一部分服务人员乘坐小轿车,八年级师生乘坐旅游大巴同时从学校出发,当小轿车到达目的地时,旅游大巴行走.已知旅游大巴比小轿车每小时少走,请分别求出旅游大巴和小轿车的速度.解:设旅游大巴的速度是,根据题意,下面列出的方程正确的是()A. B. C. D.3.若点关于原点的对称点是,则m+n的值是()A.1 B.-1 C.3 D.-34.下列计算正确的是()A.x2•x3=x6 B.(xy)2=xy2 C.(x2)4=x8 D.x2+x3=x55.如图,在第一个中,,,在上取一点,延长到,使得,得到第二个;在上取一点,延长到,使得;…,按此做法进行下去,则第5个三角形中,以点为顶点的等腰三角形的顶角的度数为()A. B. C. D.6.在一次中学生田径运动会上,参加男子跳高的21名运动员的成绩如下表所示:成绩/m1.501.601.651.701.751.80人数235443则这些运动员成绩的中位数、众数分别为()A.1.65m,1.70m B.1.65m,1.65mC.1.70m,1.65m D.1.70m,1.70m7.对不等式进行变形,结果正确的是()A. B. C. D.8.下列四个手机软件图标中,属于轴对称图形的是()A. B. C. D.9.实数-2,,,,-中,无理数的个数是:A.2 B.3 C.4 D.510.下列各数中,是无理数的是()A. B. C.0 D.二、填空题(每小题3分,共24分)11.如图,D为△ABC外一点,BD⊥AD,BD平分△ABC的一个外角,∠C=∠CAD,若AB=5,BC=3,则BD的长为_______.12.小亮用天平称得一个罐头的质量为2.026kg,近似数2.026精确到0.1是_____.13.将函数的图象沿轴向下平移2个单位,所得图象对应的函数表达式为__________.14.如图,∠2=∠3=65°,要使直线a∥b,则∠1=_____度.15.如图,直线经过原点,点在轴上,于.若A(4,0),B(m,3),C(n,-5),则______.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P到BC的距离是_______.17.分解因式:.18.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.三、解答题(共66分)19.(10分)计算=20.(6分)如图(1),在ABC中,,BC=9cm,AC=12cm,AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,,DE=4cm,DF=5cm,.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.21.(6分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.22.(8分)如图,已知∠AOB和点C,D.求作:点P,使得点P到∠AOB两边的距离相等,且PC=PD.(要求:用直尺与圆规作图,保留作图痕迹)23.(8分)阅读理解:我们把称为二阶行列式,其运算法则为,如:,解不等式,请把解集在数轴上表示出来.24.(8分)化简:(1)(2)25.(10分)如图,已知,直线l垂直平分线段AB尺规作图:作射线CM平分,与直线l交于点D,连接AD,不写作法,保留作图痕迹在的条件下,和的数量关系为______.证明你所发现的中的结论.26.(10分)如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣8,4)、B(﹣7,7)、C(﹣2,2).(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)判断△ABC的形状,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由线段垂直平分线的性质解得,再由直角三角形中,30°角所对的直角边等于斜边的一半解题即可.【详解】是线段BC的垂直平分线,故选:D.【点睛】本题考查垂直平分线的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.2、A【分析】由题意根据所设未知数找出等量关系建立分式方程,即可判断选项.【详解】解:由题意可知利用时间等于路程除以速度和时间等量关系建立方程为:.故选:A.【点睛】本题考查分式方程的实际应用,利用时间等于路程除以速度建立等量关系是解题的关键.3、B【解析】根据关于原点对称的点的坐标特点;两个点关于原点对称时,它们的坐标符号相反,可得m、n的值,进而可算出m+n的值.【详解】∵点P1(m,-1)关于原点的对称点是P2(2,n),∴m=-2,n=1,∴m+n=-2+1=-1,故选B.【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.4、C【分析】根据同底数幂的乘法法则、积的乘方、幂的乘方、合并同类项.【详解】解:A.x2•x3=x5,故原题计算错误;B.(xy)2=x2y2,故原题计算错误;C.(x2)4=x8,故原题计算正确;D.x2和x3不是同类项,故原题计算错误.故选C.【点睛】本题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.5、A【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A5的度数.【详解】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°;同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠An=,以点A4为顶点的等腰三角形的底角为∠A5,则∠A5==5°,∴以点A4为顶点的等腰三角形的顶角的度数为180°-5°-5°=170°.故选:A.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.6、C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:共21名学生,中位数落在第11名学生处,第11名学生的跳高成绩为1.70m,故中位数为1.70;
跳高成绩为1.65m的人数最多,故跳高成绩的众数为1.65;
故选:C.【点睛】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7、B【分析】根据不等式的基本性质进行逐一判断即可得解.【详解】A.不等式两边同时减b得,A选项错误;B.不等式两边同时减2得,B选项正确;C.不等式两边同时乘2得,C选项错误;D.不等式两边同时乘得,不等式两边再同时加1得,D选项错误,故选:B.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘或除以一个负数,要改变不等号的方向.8、B【分析】根据轴对称图形的概念:如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合逐一进行判断即可得出答案.【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误;故选:B.【点睛】本题主要考查轴对称图形,会判断轴对称图形是解题的关键.9、A【分析】实数包括有理数和无理数,而无限不循环小数是无理数【详解】解:给出的数中,,-π是无理数,故选A.考点:无理数的意义.10、D【解析】根据无理数的定义,可得答案.【详解】,,0是有理数,是无理数,故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题(每小题3分,共24分)11、3【分析】延长AD与BC交于点E,求出AB和AD的长,再利用勾股定理求出BD的长【详解】如图,设CB与AD延长线交于E点∵BD平分∠ABE,在直角△ABD中,由勾股定理得到【点睛】本题考查了辅助线以及勾股定理的运用,利用辅助线求出直角三角形直角边和斜边长,再利用勾股定理求出直角边长是关键12、2.0【解析】2.026kg,精确到0.1即对小数点后的0后边的数进行四舍五入,为2.0,故答案为2.0.13、【解析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将函数y=3x的图象沿y轴向下平移1个单位长度后,所得图象对应的函数关系式为:y=3x−1.故答案为:y=3x−1.【点睛】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.14、1【分析】根据平行线的判定解决问题.【详解】要使直线a∥b,必须∠1+∠2+∠3=180°,∴∠1=180°−65°−65°=1°,故答案为1.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.15、【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=1.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=1,故答案为:1.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16、3【解析】分析:过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PD=PE,那么PE=PA=PD,又AD=6,进而求出PE=3.详解:如图,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.17、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.18、18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或21.三、解答题(共66分)19、3【解析】原式=2+1=320、(1)t=或;(2)【分析】(1)先求出△ABC面积,进而可求出△APC的面积,分P点运动到BC边上时和P点运动到AB边上时两种情况分别讨论即可;(2)由全等三角形的性质得出,进而可求出P的运动时间,即Q的运动时间,再利用速度=路程÷时间求解即可.【详解】(1)∵△APC的面积等于△ABC面积的一半当P点运动到BC边上时,此时即此时当P点运动到AB边上时,作PQ⊥AC于Q此时即∴此时P点在AB边的中点此时综上所述,当t=或时,△APC的面积等于△ABC面积的一半(2)∵,DE=4cm,DF=5cm,此时P点运动的时间为∵P,Q同时出发,所以Q运动的时间也是∴Q运动的速度为【点睛】本题主要考查全等三角形的性质及三角形面积,掌握全等三角形的性质及分情况讨论是解题的关键.21、(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.22、见解析.【分析】作∠AOB的平分线和线段CD的垂直平分线,它们的交点为P点.【详解】如图,点P为所作.【点睛】此题考查作图-复杂作图,解题关键在于掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23、,数轴见解析.【分析】根据题中所给的运算法则把所求的不等式的左边的行列式进行转化,然后再利用解不等式的方法进行求解,求得解集后在数轴上表示出来即可.【详解】∵,∴不等式可转化为:,∴4x-6+2x>2x-3,∴,解得:,在数轴上表示解集如图所示:.【点睛】本题考查了新定义运算,解一元一次不等式,在数轴上表示不等式的解集等,弄清新的运算法则,熟练掌握解一元一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 潮流计算的仿真课程设计
- 四年级数学(小数加减运算)计算题专项练习与答案汇编
- 潮州拜神风俗研究报告
- 测量温度课程设计
- 测量快递件重量课程设计
- 测量仪器管理工作方案
- 测绘项目工期安排方案
- 仲恺农业工程学院《回归分析》2021-2022学年第一学期期末试卷
- 测绘单位目标考核方案
- 测温监控维修方案
- 施工现场临水施工方案
- 2022年公务员多省联考《申论》真题(四川县乡卷)及答案解析
- 艾滋病职业防护培训
- 全科医生转岗培训结业考核模拟考试试题
- 2025年高考数学专项题型点拨训练之初等数论
- 上海市浦东新区2024-2025学年六年级上学期11月期中数学试题(无答案)
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 通信技术工程师招聘笔试题与参考答案(某世界500强集团)2024年
- 2024至2030年中国节流孔板组数据监测研究报告
- 2024年第九届“学宪法、讲宪法”活动知识竞赛测试题库及答案
- 2024年四川省宜宾市中考地理试卷(含答案与解析)
评论
0/150
提交评论