上海市嘉定区南翔镇怀少学校2025届数学八上期末考试试题含解析_第1页
上海市嘉定区南翔镇怀少学校2025届数学八上期末考试试题含解析_第2页
上海市嘉定区南翔镇怀少学校2025届数学八上期末考试试题含解析_第3页
上海市嘉定区南翔镇怀少学校2025届数学八上期末考试试题含解析_第4页
上海市嘉定区南翔镇怀少学校2025届数学八上期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市嘉定区南翔镇怀少学校2025届数学八上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,长方形被分割成个正方形和个长方形后仍是中心对称图形,设长方形的周长为,若图中个正方形和个长方形的周长之和为,则标号为①正方形的边长为()A. B. C. D.2.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS3.下列说法正确的是()A.是最简二次根式 B.的立方根不存在C.点在第四象限 D.是一组勾股数4.下面计算正确的是()A. B.C. D.25.一次函数的图象上有两点,则与的大小关系是()A. B. C. D.无法确定6.若分式的值为0,则x的取值是()A. B. C.或3 D.以上均不对7.如图,在中,平分,平分,且交于,若,则的值为A.36 B.9 C.6 D.188.二次三项式(是整数),在整数范围内可分为两个一次因式的积,则的所有可能值有()个A.4 B.5 C.6 D.89.如图,在中,,,求证:.当用反证法证明时,第一步应假设()A. B. C. D.10.已知三角形两边的长分别是和,则此三角形第三边的长可能是()A. B. C. D.11.图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能12.若是完全平方式,则的值为()A.-5或7 B. C.13或-11 D.11或-13二、填空题(每题4分,共24分)13.直线与平行,则的图象不经过____________象限.14.如图,六边形是轴对称图形,所在的直线是它的对称轴,若,则的大小是__________.15.已知a2+b2=18,ab=﹣1,则a+b=____.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2.0),点(0,1),有下列结论:①关于x的方程kx十b=0的解为x=2:②关于x方程kx+b=1的解为x=0;③当x>2时,y<0;④当x<0时,y<1.其中正确的是______(填序号).17.点,是直线上的两点,则_______0(填“>”或“<”).18.如果有:,则=____.三、解答题(共78分)19.(8分)尺规作图:已知,在内求作一点P,使点P到A的两边AB、AC的距离相等,且PB=PA(保留作图痕迹).20.(8分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?21.(8分)先化简,再求值:,其中.22.(10分)如图,在中,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒().(1)用尺规作线段的垂直平分线(不写作法,保留作图痕迹);(2)若点恰好运动到的垂直平分线上时,求的值.23.(10分)如图,(1)画出关于轴对称的图形.(2)请写出点、、的坐标:(,)(,)(,)24.(10分)为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?25.(12分)解不等式组:;并将解集在数轴上表示出来.26.已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.

参考答案一、选择题(每题4分,共48分)1、B【分析】设两个大正方形边长为x,小正方形的边长为y,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形被分成个正方形和个长方形后仍是中心对称图形,两个大正方形相同、个长方形相同.设小正方形边长为,大正方形的边长为,小长方形的边长分别为、,大长方形边长为、.长方形周长,即:,,.个正方形和个长方形的周长和为,,,.标号为①的正方形的边长.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.2、C【详解】试题分析:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,,△EOC≌△DOC(SSS).故选C.考点:1.全等三角形的判定;2.作图—基本作图.3、C【分析】根据最简二次根式的定义、立方根的性质、坐标和象限的关系、勾股定理即可判断结果.【详解】解:A、=,不是最简二次根式,故选项不符合;B、的立方根是,故选项不符合;C、点在第四象限,正确,故选项符合;D、,不是勾股数,故选项不符合;故选C.【点睛】本题考查了最简二次根式、立方根、坐标和象限、勾股数,解题的关键是正确理解对应概念,属于基础题.4、A【分析】根据二次根式的乘、除法公式和同类二次根式的定义逐一判断即可.【详解】解:A.,故本选项正确;B.和不是同类二次根据,不能合并,故本选项错误;C.,故本选项错误;D.2,故本选项错误.故选A.【点睛】此题考查的是二次根式的运算,掌握二次根式的乘、除法公式和同类二次根式的定义是解决此题的关键.5、A【分析】直接利用一次函数的性质即可得出答案.【详解】在一次函数中,,∴y随着x的增大而增大.,∴.故选:A.【点睛】本题主要考查一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键.6、B【分析】根据分式的值为零的条件可得到,再解可以求出x的值.【详解】解:由题意得:,解得:x=1,

故选:B.【点睛】本题主要考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.7、A【分析】先根据角平分线的定义、角的和差可得,再根据平行线的性质、等量代换可得,然后根据等腰三角形的定义可得,从而可得,最后在中,利用勾股定理即可得.【详解】平分,平分,,,,,,,,在中,由勾股定理得:,故选:A.【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.8、C【分析】根据十字相乘法的分解方法和特点可知:的值应该是的两个因数的和,即即得m的所有可能值的个数.【详解】,的可能值为:故m的可能值为:共6个,故选:C.【点睛】考查了十字相乘法分解因式,对常数项的不同分解是解本题的关键,注意所求结果是值的个数.9、B【分析】根据反证法的概念,即可得到答案.【详解】用反证法证明时,第一步应假设命题的结论不成立,即:.故选B.【点睛】本题主要考查反证法,掌握用反证法证明时,第一步应假设命题的结论不成立,是解题的关键.10、C【分析】根据三角形的三边关系可直接解答本题.【详解】解:三角形的两边长分别是3和8,设第三边长为c,根据三角形的三边关系可得:,可知c可取值8;故选:C.【点睛】本题是基础题,根据已知的两边的长度,求出第三条边的取值范围,即可正确解答.11、D【解析】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D.12、C【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵9x2-2(k-1)x+16=(3x)2-2(k-1)x+42,

∵9x2-2(k-1)x+16是完全平方式,∴-2(k-1)x=±2×3x×4,

解得k=13或k=-1.

故选:C.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.二、填空题(每题4分,共24分)13、四【解析】根据两直线平行的问题得到k=2,然后根据一次函数与系数的关系判定y=2x+1所经过的象限,则可得到y=kx+1不经过的象限.解:∵直线y=kx+1与y=2x-1平行,∴k=2,∴直线y=kx+1的解析式为y=2x+1,∴直线y=2x+1经过第一、二、三象限,∴y=kx+1不经过第四象限.故答案为四.14、300°【分析】根据轴对称图形的概念可得∠AFC=∠EFC,∠BCF=∠DCF,再根据题目条件∠AFC+∠BCF=150°,可得到∠AFE+∠BCD的度数.【详解】解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∴∠AFC=∠EFC,∠BCF=∠DCF,∵∠AFC+∠BCF=150°,∴∠AFE+∠BCD=150°×2=300°,故答案为:300°.【点睛】此题主要考查了轴对称的性质,关键是掌握轴对称图形的对称轴两边的图形能完全重合.15、±1.【分析】根据题意,计算(a+b)2的值,从而求出a+b的值即可.【详解】(a+b)2=a2+2ab+b2=(a2+b2)+2ab=18﹣2=16,则a+b=±1.故答案为:±1.【点睛】本题考查了代数式的运算问题,掌握完全平方公式和代入法是解题的关键.16、①②③【分析】根据一次函数的图象与性质判断即可.【详解】①由一次函数y=kx+b的图象与x轴点(2.0)知,当y=0时,x=2,即方程kx+b=0的解为x=2,故此项正确;②由一次函数y=kx+b的图象与y轴点(0,1),当y=1时,x=0,即方程kx+b=1的解为x=0,故此项正确;③由图象可知,x>2的点都位于x轴的下方,即当x>2时,y<0,故此项正确;④由图象可知,位于第二象限的直线上的点的纵坐标都大于1,即当x<0时,y﹥1,故此项错误,所以正确的是①②③,故答案为:①②③.【点睛】本题考查了一次函数的图象与性质,涉及一次函数与一元一次方程的关系、一次函数与不等式的关系,解答的关键是会利用数形结合思想解决问题.17、>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.【详解】解:∵直线的k<0,∴函数值y随x的增大而减小.∵点,是直线上的两点,-1<3,∴y1>y2,即故答案为:>.【点睛】本题考查一次函数图象上点的坐标特征。利用数形结合思想解题是关键.18、1【分析】根据算术平方根和绝对值的非负性即可求解.【详解】解:由题意可知:,且,而它们相加为0,故只能是且,∴,∴,故答案为:1.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,熟练掌握算术平方根的概念及绝对值的概念是解决本题的关键.三、解答题(共78分)19、作图见解析.【分析】由P到∠A的两边AB、AC的距离相等,根据角平分线的性质得到P点在∠CAB的角平分线上,由PB=PA,根据垂直平分线的性质得到点P在AB的垂直平分线上.【详解】解:作∠CAB的角平分线AD,再作AB的垂直平分线MN,

AD与MN的交点即为P点.

如图:【点睛】本题考查作角平分线和作垂直平分线.理解角平分线上的点到角两边距离相等,线段垂直平分线上的点到线段两端距离相等是解题关键.20、规定期限1天;方案(3)最节省【分析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x天完成,则有:,解得x=1.经检验得出x=1是原方程的解;答:规定期限1天.方案(1):1×1.5=30(万元)方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×1=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.21、;2【分析】先约分化简,再计算括号,最后代入化简即可.【详解】解:原式===将x=3代入,原式=2.【点睛】本题考查分式的混合运算、乘法公式等知识,解题的关键是灵活掌握分式的混合运算法则,注意简便运算,属于中考常考题型.22、(1)见解析;(2)的值为或【分析】(1)分别以AB为圆心,大于AB为半径作弧,连接两户的交点即为线段AB的垂直平分线,(2)勾股定理求出AC的长,当P在AC上时,利用勾股定理解题,当P在AB上时,利用解题.【详解】解:(1)分别以AB为圆心,大于AB为半径作弧,连接两户的交点即为线段AB的垂直平分线,有作图痕迹;(2)如图,在中,由勾股定理得,①当P在AC上时,,∴,,,在中,由勾股定理得:即:解得:;②当P在AB上时,,即:,∴∴的值为或.【点睛】本题考查了尺规作图--垂直平分线,勾股定理的实际应用,会根据P的运动进行分类讨论,建立等量关系是解题关键.23、(1)见解析;(2)(3,2)(4,-3)(1,-1)【分析】(1)根据对称的特点,分别绘制A、B、C的对应点,依次连接对应点得到对称图形;(2)根据对称图形读得坐标.【详解】(1)图形如下:(2)根据图形得:(3,2)(4,-3)(1,-1)【点睛】本题考查绘制轴对称图形,注意,绘制轴对称图形实质就是绘制对称点,然后将对称点依次连接即为对称图形.24、(1)2000;(2)该公司原计划安排750名工人生产帐篷.【解析】试题分析:(1)直接利用20000÷10即可得到平均每天应生产帐篷多少顶;(2)设该公司原计划安排x名工人生产帐篷,那么原计划每名工人每天生产帐篷顶,后来每名工人每天生产帐篷×(1+25%)顶,然后根据已知条件即可列出方程10-2-2=,解方程即可求出该公司原计划安排多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论