




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省泰兴市西城中学数学八上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为A.5 B.7 C.5或7 D.62.如图,在锐角三角形ABC中,直线l为BC的中垂线,射线m为∠ABC的角平分线,直线l与m相交于点P.若∠BAC=60°,∠ACP=24°,则∠ABP的度数是()A.24° B.30° C.32° D.36°3.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①,两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,或其中正确的结论有()A.个 B.个 C.个 D.个4.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形 B.矩形 C.正八边形 D.正六边形5.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.9 D.106.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断7.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6 B.5 C.4 D.38.下列图形中,是轴对称图形的是()A. B.C. D.9.下列说法不正确的是()A.的平方根是 B.-9是81的一个平方根C. D.0.2的算术平方根是0.0210.如果数据x1,x2,…,xn的方差是3,则另一组数据2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.511.比较,3,的大小,正确的是()A. B.C. D.12.点关于轴的对称点的坐标是()A.(2,-3) B.(-2,-3) C.(-2,3) D.(-3,2)二、填空题(每题4分,共24分)13.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,△ABC的面积是_____.14.多项式4x2+1加上一个单项式,使它成为一个整式的完全平方,则这个单项式可以是__________________.(填写符合条件的一个即可)15.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______16.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车辆,则列出的不等式为________.17.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.18.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.三、解答题(共78分)19.(8分)如图,点B在线段上,,,,求证:.20.(8分)如图,在中,,.(1)如图1,点在边上,,,求的面积.(2)如图2,点在边上,过点作,,连结交于点,过点作,垂足为,连结.求证:.21.(8分)一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9,行驶了2后发现油箱中的剩余油量6.(1)求油箱中的剩余油量()与行驶的时间()之间的函数关系式.(2)如果摩托车以50的速度匀速行驶,当耗油6时,老王行驶了多少千米?22.(10分)如图,在坐标系的网格中,且三点均在格点上.(1)C点的坐标为;(2)作关于y轴的对称三角形;(3)取的中点D,连接A1D,则A1D的长为.23.(10分)解方程:.24.(10分)某市为节约水资源,从2018年1月1日起调整居民用水价格,每立方米水费比2017年上涨.小明家2017年8月的水费是18元,而2018年8月的水费是11元.已知小明家2018年8月的用水量比2017年8月的用水量多5m1.(1)求该市2017年居民用水的价格;(2)小明家2019年8月用水量比2018年8月份用水量多了20%,求小明家2019年8月份的水费.25.(12分)(1)因式分解:.(2)解方程:.(3)先化简:,然后在,,,四个数中选一个你认为合适的数代入求值.26.如图1是3×3的正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,(要求:绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图2中的两幅图就视为同一种图案),请在图3中的四幅图中完成你的设计.
参考答案一、选择题(每题4分,共48分)1、B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为1.故选B.【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.2、C【分析】连接PA,根据线段垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义得到∠PBC=∠ABP,根据三角形内角和定理列式计算即可.【详解】连接PA,如图所示:
∵直线L为BC的垂直平分线,
∴PB=PC,
∴∠PBC=∠PCB,
∵直线M为∠ABC的角平分线,
∴∠PBC=∠ABP,
设∠PBC=x,则∠PCB=∠ABP=x,
∴x+x+x+60°+24°=180°,
解得,x=32°,
故选C.【点睛】考查的是线段垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3、C【分析】由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t,可得出答案.【详解】图象可知、两城市之间的距离为,甲行驶的时间为小时,而乙是在甲出发小时后出发的,且用时小时,即比甲早到小时,故①②都正确;设甲车离开城的距离与的关系式为,把代入可求得,,设乙车离开城的距离与的关系式为,把和代入可得,解得,,令可得:,解得,即甲、乙两直线的交点横坐标为,此时乙出发时间为小时,即乙车出发小时后追上甲车,故③正确;令,可得,即,当时,可解得,当时,可解得,又当时,,此时乙还没出发,当时,乙到达城,;综上可知当的值为或或或时,两车相距千米,故④不正确;综上可知正确的有①②③共三个,故选:C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.4、C【解析】因为正八边形的每个内角为,不能整除360度,故选C.5、C【解析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×1×AD∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=1故选C.【点睛】本题考查了轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.6、B【分析】根据判别式即可求出答案.【详解】解:由题意可知:,
∴,
故选:B.【点睛】本题考查的是一元二次方程根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.7、C【分析】由∠ABC=15°,AD是高,得出BD=AD后,证△ADC≌△BDH后,得到BH=AC,即可求解.【详解】∵∠ABC=15°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,在△ADC与△BDH中,∴△ADC≌△BDH∴BH=AC=1.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=15°,AD是高,得出BD=AD是正确解答本题的关键.8、D【分析】根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.【点睛】本题考查轴对称图形的判断,关键在于熟记轴对称图形的概念.9、D【分析】依据平方根、算术平方根的性质进行判断即可.【详解】A、的平方根是,故A正确,与要求不符;B、-9是81的一个平方根,故B正确,与要求不符;C、,故C正确,与要求相符;D、0.2的算术平方根不是0.02,故D错误,与要求相符.故选D.【点睛】本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.10、C【解析】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案.【详解】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,根据方差公式:=3,则==4×=4×3=12,故选C.【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.11、C【分析】分别计算出,3,的平方,即可比较大小.【详解】解:,32=9,,∵7<8<9,∴,故选:C.【点睛】本题考查了实数大小比较,解决本题的关键是先算出3个数的平方,再比较大小.12、B【分析】根据关于轴的对称点的点的特点是保持y不变,x取相反数即可得出.【详解】根据关于轴的对称点的点的特点得出,点关于轴的对称点的坐标是(-2,-3)故答案选B.【点睛】本题考查了坐标点关于y轴对称点的坐标,属于坐标轴中找对称点的基础试题.二、填空题(每题4分,共24分)13、1.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到的面积等于周长的一半乘以2,代入求出即可.【详解】如下图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=2,∵的周长是1,OD⊥BC于D,且OD=2,∴=1,故答案为:1【点睛】本题主要考查了角平分线的性质及三角形面积的求法,熟练掌握角平分线的性质是解决本题的关键.14、或或或【分析】由于多项式1x2+1加上一个单项式后能成为一个整式的完全平方,那么此单项式可能是二次项、可能是常数项,可能是一次项,还可能是1次项,分1种情况讨论即可.【详解】解:∵多项式1x2+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是1次项,①∵1x2+1-1x2=12,故此单项式是-1x2;②∵1x2+1±1x=(2x±1)2,故此单项式是±1x;③∵1x2+1-1=(2x)2,故此单项式是-1;④∵1x1+1x2+1=(2x2+1)2,故此单项式是1x1.故答案是-1x2、±1x、-1、1x1.15、—1【解析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴AC=,∵A点表示-1,∴E点表示的数为:-1,故答案为-1.【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.16、【分析】首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.【详解】解:设原来每天最多能生产x辆,由题意得:
15(x+6)>20x,故答案为:【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住关键描述语.17、(1,0)【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE=D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:,解得,,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.18、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【点睛】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.三、解答题(共78分)19、证明见解析【分析】根据平行线的性质可得∠ABC=∠D,再利用SAS证明△ABC≌△EDB,根据全等三角形对应边相等即可得出结论.【详解】证明:∵,∴∠ABC=∠D,又∵,,∴△ABC≌△EDB(SAS),∴【点睛】本题考查全等三角形的判定定理.熟练掌握全等三角形的几种判定定理,并能结合题意选择合适的定理是解题关键.20、(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC,进而可得BC与BD,然后根据三角形的面积公式计算即可;(2)过点B作BH⊥BG交EF于点H,如图3,则根据余角的性质可得∠CBG=∠EBH,由已知易得BE∥AC,于是∠E=∠EFC,由于,,则根据余角的性质得∠EFC=∠BCG,于是可得∠E=∠BCG,然后根据ASA可证△BCG≌△BEH,可得BG=BH,CG=EH,从而△BGH是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD中,∵,,,∴,∵,∴BC=4,BD=3,∴;(2)过点B作BH⊥BG交EF于点H,如图3,则∠CBG+∠CBH=90°,∵,∴∠EBH+∠CBH=90°,∴∠CBG=∠EBH,∵,,∴BE∥AC,∴∠E=∠EFC,∵,,∴∠EFC+∠FCG=90°,∠BCG+∠FCG=90°,∴∠EFC=∠BCG,∴∠E=∠BCG,在△BCG和△BEH中,∵∠CBG=∠EBH,BC=BE,∠BCG=∠E,∴△BCG≌△BEH(ASA),∴BG=BH,CG=EH,∴,∴.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.21、(1);(2)200千米【分析】(1)根据题意老王骑摩托车每小时耗油1.5L,即可表示剩余油量;(2)先求出油箱中的剩余油量为3升时,该摩托车行驶的时间,就可求出路程,路程=速度×时间.【详解】(1)根据题意得老王骑摩托车每小时耗油(9-6)÷2=1.5L,则行驶t小时剩余的油量为9-1.5t,∴剩余油量;(2)由得:t=4,s=vt=50×4=200,所以,摩托车行驶了200千米.【点睛】本题考查了函数关系式,读懂题意,弄清函数中的系数与题目中数量的对应关系是写出关系式的关键.22、(1)(4,-2);(2)作图见解析;(3).【分析】(1)根据图象可得C点坐标;(2)根据关于y轴对称的点,横坐标互为相反数,纵坐标相等描出三个顶点,再依次连接即可;(3)先利用勾股定理逆定理证明为直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求得A1D.【详解】解:(1)由图可知,C(4,-2)故答案为:(4,-2);(2)如图所示,(3)由图可知,∴,即为直角三角形,∴.
故答案为:.【点睛】本题考查坐标与图形变化轴对称,勾股定理逆定理,直角三角形斜边上的中线.(3)中能证明三角形为直角三角形,并理解直角三角形斜边上的中线等于斜边的一半是解题关键.23、.【解析】解分式方程去分母转化成一元一次方程,分式方程一定要检验24、(1)该市2017年的用水价格为每立方米元;(2)小明家2019
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工会年度工作总结
- 北师大版三年级下册数学第一次月考(1-2单元)检测卷(含答案)
- 教育学校活动主题班会
- 幼儿园教育保育评估指南
- 天然气灶具知识培训课件
- 教育扶贫控辍保学政策
- 公司车辆停放培训
- 中秋立体美术课件
- 教育的未来:探索新时代的教学模式
- 《GBT 40339-2021金属和合金的腐蚀 服役中检出的应力腐蚀裂纹的重要性评估导则》全新解读
- 走进中国传统节日 详细版课件
- Q∕SY 02098-2018 施工作业用野营房
- 浙教版劳动五年级下册 项目三 任务三 环保小车我来造 教案
- 隔离开关培训课件
- 图像融合技术中英文对照外文翻译文献
- 35kV高压电缆敷设专项施工方案(完整版)
- 锅炉空气预热器拆除安装方案
- 风电齿轮箱结构原理及维护知识
- 加油站安全生产考核奖惩台账
- 出国签证户口本翻译模板(共4页)
- 农村渡口改造及小型码头
评论
0/150
提交评论