2025届浙江省湖州市名校八年级数学第一学期期末调研试题含解析_第1页
2025届浙江省湖州市名校八年级数学第一学期期末调研试题含解析_第2页
2025届浙江省湖州市名校八年级数学第一学期期末调研试题含解析_第3页
2025届浙江省湖州市名校八年级数学第一学期期末调研试题含解析_第4页
2025届浙江省湖州市名校八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省湖州市名校八年级数学第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.等式成立的条件是()A. B. C.x>2 D.2.要使分式有意义,则的取值范围是()A. B. C. D.3.已知关于的不等式组有且只有一个整数解,则的取值范围是()A. B. C. D.4.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18° B.24° C.30° D.36°5.学校举行图书节义卖活动,将所售款项捐给其他贫困学生,在这次义卖活动中,某班级售书情况如下表:售价元元元元数目本本本本下列说法正确的是()A.该班级所售图书的总收入是元 B.在该班级所传图书价格组成的一组数据中,中位数是元C.在该班级所售图书价格组成的一组数据中,众数是元 D.在该班级所售图书价格组成的一组数据中,平均数是元6.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.47.在下列说法中:①有一个外角是120°的等腰三角形是等边三角形.②有两个外角相等的等腰三角形是等边三角形.③有一边上的高也是这边上的中线的等腰三角形是等边三角形.④三个外角都相等的三角形是等边三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个8.下列关于的叙述错误的是()A.是无理数 B.C.数轴上不存在表示的点 D.面积为的正方形的边长是9.下列计算正确的是()A.×=2 B.﹣=1 C.÷=2 D.÷=10.把分解因式得()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于EF的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若AD=10cm,∠ABC=2∠A,则CD的长为__________cm.12.等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为_____.13.已知数据,,,,0,其中正数出现的频率是_________.14.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.15.如图所示,在Rt△ABC中,∠C=90°,∠A=15°,将△ABC翻折,是顶点A与顶点B重合,折痕为MH,已知AH=2,则BC等于_____.16.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)17.如图所示,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为(________)18.如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AF;(2)过点E作EG∥DC,交AC于点G,试比较AF与GC的大小关系,并说明理由.20.(6分)如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)当秒时,求的长;(2)求出发时间为几秒时,是等腰三角形?(3)若沿方向运动,则当点在边上运动时,求能使成为等腰三角形的运动时间.21.(6分)甲、乙、丙三明射击队员在某次训练中的成绩如下表:队员成绩(单位:环)甲66778999910乙67788889910丙66677810101010针对上述成绩,三位教练是这样评价的:教练:三名队员的水平相当;教练:三名队员每人都有自己的优势;教练:如果从不同的角度分析,教练和说的都有道理.你同意教练的观点吗?通过数据分析,说明你的理由.22.(8分)在△ABC中,CD⊥AB于点D,DA=DC=4,DB=1,AF⊥BC于点F,交DC于点E.(1)求线段AE的长;(1)若点G是AC的中点,点M是线段CD上一动点,连结GM,过点G作GN⊥GM交直线AB于点N,记△CGM的面积为S1,△AGN的面积为S1.在点M的运动过程中,试探究:S1与S1的数量关系23.(8分)小军的爸爸和小慧的爸爸都是出租车司机,他们在每天的白天、夜间都要到同一加油站各加一次油.白天和夜间的油价不同,有时白天高,有时夜间高,但不管价格如何变化,他们两人采用固定的加油方式:小军的爸爸不论是白天还是夜间每次总是加油,小慧的爸爸则不论是白天还是夜间每次总是花元钱加油.假设某天白天油的价格为每升元,夜间油的价格为每升元.问:(1)小军的爸爸和小慧的爸爸在这天加油的平均单价各是多少?(2)谁的加油方式更合算?请你通过数学运算,给以解释说明.24.(8分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(10分)先阅读后作答:我们已经知道.根据几何图形的面积可以说明完全平方公式,实际上还有一些等式也是可以用这种公式加以说明.例如勾股定理a2+b2=c2就可以用如图的面积关系来说明.(1)根据图2写出一个等式:;(2)已知等式,请你画出一个相应的几何图形加以说明.26.(10分)如图,在中,,,是等边三角形,点在边上.(1)如图1,当点在边上时,求证;(2)如图2,当点在内部时,猜想和数量关系,并加以证明;(3)如图3,当点在外部时,于点,过点作,交线段的延长线于点,,.求的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】直接利用二次根式的性质得出关于x的不等式进而求出答案.【详解】解:∵等式=成立,∴,解得:x>1.故选:C.【点睛】此题主要考查了二次根式的性质,正确解不等式组是解题关键.2、A【分析】分式有意义的条件是分母不能为0即可.【详解】要使分式有意义,分母不为0,即x+1≠0,∴x≠-1,则的取值范围是x≠-1.故选择:A.【点睛】本题考查分式有意义的条件问题,掌握分式有意义就是满足分母不为0,会解不等式是关键.3、D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a的范围.【详解】解:解①得且,解②得.若不等式组只有个整数解,则整数解是.所以,故选:D.【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4、A【解析】试题分析:先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5、A【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B、C进行判断;利用平均数的计算公式计算出这组数据的平均,从而可对D进行判断.【详解】A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、共50本书,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为,所以D选项错误.故选:A.【点睛】本题考查计算中位数,众数和平均数,熟练掌握它们的计算方法是解题的关键.6、A【分析】根据第1~4组的频数求得第5组的频数,再根据即可得到结论.【详解】解:第5组的频数为:,∴第5组的频率为:,故选:A.【点睛】此题主要考查了频数与频率,正确掌握频率求法是解题关键.7、B【分析】根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.【点睛】此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.8、C【分析】根据无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式逐一判断即可.【详解】解:A.是无理数,故本选项不符合题意;B.,故本选项不符合题意;C.数轴上存在表示的点,故本选项符合题意;D.面积为的正方形的边长是,故本选项不符合题意.故选C.【点睛】此题考查的是实数的相关性质,掌握无理数的定义、实数比较大小、实数与数轴的关系和正方形的面积公式是解决此题的关键.9、D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】解:A、原式==,所以A选项的计算错误;B、原式=﹣1,所以B选项的计算错误;C、原式==,所以C选项的计算错误;D、原式=3÷2=,所以D选项的计算正确.故选:D.【点睛】本题考查二次根式的运算,掌握二次根式的性质和运算法则是解题关键.10、D【分析】首先利用平方差公式分解因式,进而利用完全平方公式分解因式得出即可.【详解】解:

故选:D.【点睛】本题主要考查了公式法因式分解,正确应用乘法公式是解题关键.二、填空题(每小题3分,共24分)11、1【分析】由画法可以知道画的是角平分线,再根据角平分线性质解答即可.【详解】解:由题意可得:BD是∠ABC的角平分线,

∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,

∴∠ABC=60°,∠A=30°,

∴∠CBD=∠DBA=30°,

∴BD=2CD,

∵∠DBA=∠A=30°,

∴AD=BD,

∴AD=2CD=10cm,

∴CD=1cm,

故答案为:1.【点睛】本题考查了基本作图,关键是根据角平分线的画法和性质解答.12、40°或140°【分析】分两种情况讨论:锐角三角形与钝角三角形,作出图形,互余和三角形的外角性质即可求解.【详解】解:如图1,三角形是锐角三角形时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角形时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.【点睛】本题考查根据等腰三角形的性质求角度,作出图形,分类讨论是解题的关键.13、0.4【分析】上面五个数中,共有2个正数,故可以求得正数出现的频率.【详解】解:∵共五个数中,共有2个正数,∴正数出现的频率为:2÷5=0.4故答案为:0.4【点睛】考查频率的计算.熟记公式是解决本题的关键.14、2秒或3.5秒【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9-3t=5-t,解方程即可;②当Q运动到E和B之间时,设运动时间为t,则得:3t-9=5-t,解方程即可.【详解】∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9−3t=5−t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t−9=5−t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2秒或3.5秒.【点睛】本题是动点问题与图形的结合,分情况讨论,根据平行四边形的性质,列出关系式即可求解.15、1.【分析】根据折叠的性质得到HB=HA,根据三角形的外角的性质得到∠CHB=30°,根据直角三角形的性质计算即可.【详解】由折叠的性质可知,HB=HA=2,∴∠HAB=∠HBA=15°,∴∠CHB=30°,∵∠C=90°,∴BC=BH=1,故答案为:1.【点睛】本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.16、=【分析】探究规律后,写出第n个等式即可求解.【详解】解:…则第n个等式为故答案为:【点睛】本题主要考查二次根式的应用,找到规律是解题的关键.17、30【分析】利用等腰三角形的性质可得出ABC的度数,再根据垂直平分线定理得出AD=BD,,继而可得出答案.【详解】解:DE垂直平分AB故答案为:30.【点睛】本题考查的知识点是等腰三角形的性质以及垂直平分线的性质,掌握以上知识点是解此题的关键.18、1.【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,

∵四边形OABC是矩形,

∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,

∵CD=1DB,

∴CD=6,BD=2,

∴CD=AB,

∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,

∴A′D=AD,A′E=AE,

在Rt△A′CD与Rt△DBA中,,∴Rt△A′CD≌Rt△DBA(HL),

∴A′C=BD=2,

∴A′O=4,

∵A′O2+OE2=A′E2,

∴42+OE2=(8-OE)2,

∴OE=1,

故答案是:1.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.三、解答题(共66分)19、(1)见解析;(2)AF=GC,理由见解析.【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED=∠AFB,然后根据对顶角的性质和等量代换可得∠AEF=∠AFB,进一步即可推出结论;(2)如图,过F作FH⊥BC于点H,根据角平分线的性质可得AF=FH,进而可得AE=FH,易得FH∥AE,然后根据平行线的性质可得∠EAG=∠HFC,∠AGE=∠C,进而可根据AAS证明△AEG≌△FHC,再根据全等三角形的性质和线段的和差即可得出结论.【详解】(1)证明:∵∠BAC=90°,∴∠ABF+∠AFB=90°,∵AD⊥BC,∴∠EBD+∠BED=90°,∵BF平分∠ABC,∴∠ABF=∠EBD,∴∠BED=∠AFB,∵∠BED=∠AEF,∴∠AEF=∠AFB,∴AE=AF;(2)AF=GC;理由如下:如图,过F作FH⊥BC于点H,∵BF平分∠ABC,且FH⊥BC,AF⊥BA,∴AF=FH,∵AE=AF,∴AE=FH,∵FH⊥BC,AD⊥BC,∴FH∥AE,∴∠EAG=∠HFC,∵EG∥BC,∴∠AGE=∠C,∴△AEG≌△FHC(AAS),∴AG=FC,∴AF=GC.【点睛】本题考查了直角三角形的性质、角平分线的性质、全等三角形的判定和性质、平行线的性质以及等腰三角形的判定等知识,涉及的知识点多,但难度不大,熟练掌握上述知识、灵活应用全等三角形的判定和性质是解题的关键.20、(1);(2);(3)5.5秒或6秒或6.6秒【分析】(1)根据点、的运动速度求出,再求出和,用勾股定理求得即可;(2)由题意得出,即,解方程即可;(3)当点在边上运动时,能使成为等腰三角形的运动时间有三种情况:①当时(图,则,可证明,则,则,从而求得;②当时(图,则,易求得;③当时(图,过点作于点,则求出,,即可得出.【详解】(1)解:(1),,,;(2)解:根据题意得:,即,解得:;即出发时间为秒时,是等腰三角形;(3)解:分三种情况:①当时,如图1所示:则,,,,,,,秒.②当时,如图2所示:则秒.③当时,如图3所示:过点作于点,则,,,秒.由上可知,当为5.5秒或6秒或6.6秒时,为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.21、同意教练C的观点,见解析【分析】依次求出甲、乙、丙三名队员成绩的平均数、中位数、方差及众数,根据数据的稳定性即可判断.【详解】解:依题意渴求得:甲队员成绩的平均数为=8;乙队员成绩的平均数为=8;丙队员成绩的平均数为=8;甲队员成绩的中位数为,乙队员成绩的中位数为,丙队员成绩的中位数为,甲队员成绩的方差为=[(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)2]=1.8;乙队员成绩的方差为=[(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)2]=1.2;丙队员成绩的方差为=[(6−8)2+(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(10−8)2+(10−8)2+(10−8)2+(10−8)2]=3;由于甲、乙、丙三名队员成绩的平均数分别为:,,,所以,三名队员的水平相当.故,教练A说的有道理.由于甲、乙、丙三名队员的成绩的中位数分别为:8.5;8;7.5.所以,从中位数方面分析,甲队员有优势.由于甲、乙、丙三名队员的成绩的方差分别为:,,.所以,从方差方面分析,乙队员有优势.由于甲、乙、丙三名队员的成绩的众数分别为:9;8;10.所以,从众数方面分析,丙队员有优势.故,教练B说的有道理.所以,同意教练C的观点.【点睛】此题主要考查数据分析的应用,解题的关键是熟知平均数、中位数、方差及众数的求解方法.22、(1);(1)S1+S1=4,见解析【分析】(1)先证明△ADE≌△CDB,得到DE=DB=1,在Rt△ADE中,利用勾股定理求出AE.(1)过点G作CD,DA的垂直线,垂足分别为P,Q,证明△MGP≌△NGQ,所以S1+S1=S△AGQ+S△CGP=S△ACD-S四边形GQDP,即可求解.【详解】(1)在△ABC中,CD⊥AB,AF⊥BC∴∠ADC=∠AFB=90°∵∠AED=∠CEF∴∠EAD=∠BCD在△ADE和△CDB中∴△ADE≌△CDB∴DE=DB=1∴AE=(1)在△ABC中,CD⊥AB,DA=DC=4,点G是AC的中点过点G作CD,DA的垂直线,垂足分别为P,Q.则,GP=GQ=DA=1∠PGQ=90°=∠GQN=∠GPM∵GN⊥GM∴∠MGN=90°∴∠MGP=∠NGQ∴△MGP≌△NGQS1+S1=S△AGQ+S△CGP=S△ACD-S四边形GQDP=故答案为:4【点睛】本题考查了全等三角形的判定和性质,勾股定理解直角三角形,利用三角形中位线性质求线段长度.23、(1)小军的爸爸在这天加油的平均单价是:元;小慧的爸爸在这天加油的平均单价是:元;(2)小慧的爸爸的加油方式比较合算.【分析】(1)由题意根据条件用代数式分别表示出小军的爸爸和小慧的爸爸在这天加油的平均单价即可;(2)根据题意利用作差法进行分析比较即可.【详解】解:(1)小军的爸爸在这天加油的平均单价是:(元)小慧的爸爸在这天加油的平均单价是:(元)(2),而,,,所以从而,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论