2025届河南省漯河市郾城区数学八年级第一学期期末达标检测模拟试题含解析_第1页
2025届河南省漯河市郾城区数学八年级第一学期期末达标检测模拟试题含解析_第2页
2025届河南省漯河市郾城区数学八年级第一学期期末达标检测模拟试题含解析_第3页
2025届河南省漯河市郾城区数学八年级第一学期期末达标检测模拟试题含解析_第4页
2025届河南省漯河市郾城区数学八年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省漯河市郾城区数学八年级第一学期期末达标检测模拟试题模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点到轴的距离是().A.3 B.4 C. D.2.下列哪个点在第四象限()A. B. C. D.3.已知是完全平方式,则的值是()A.5 B. C. D.4.若成立,在下列不等式成立的是()A. B. C. D.5.在中,的外角等于,的度数是()A. B. C. D.6.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.以上都不对7.如图,将一根长13厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为()厘米.A.1 B.2 C.3 D.48.下列运算正确的是()A. B. C.α8α4=α2 D.9.若,则的值为()A. B.-3 C. D.310.如图所示,、的度数分别为()度A.80,35 B.78,33 C.80,48 D.80,33二、填空题(每小题3分,共24分)11.某市对旧城区规划改建,根据2001年至2003年发展情况调查,制作成了房地产开发公司个数的条形图和各年度每个房地产开发公司平均建筑面积情况的条形图,利用统计图提供的信息计算出这3年中该市平均每年的建筑面积是_____万平方米.12.若边形的每个外角均为,则的值是________.13.如图,已知中,,的垂直平分线交于点,若,则的周长=__________.14.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(_________)15.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.16.如图,CD是的角平分线,于E,,的面积是9,则的面积是_____.17.若分式的值为0,则x=_____.18.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为_________.三、解答题(共66分)19.(10分)如图,已知:∠BDA=∠CEA,AE=AD.求证:∠ABC=∠ACB.20.(6分)先化简,再求值:(x+2)(x-2)+x(4-x),其中x=.21.(6分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?22.(8分)在中,,点、分别在、上,,与相交于点.(1)求证:;(2)求证:.23.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.24.(8分)一次函数的图象过M(6,﹣1),N(﹣4,9)两点.(1)求函数的表达式.(2)当y<1时,求自变量x的取值范围.25.(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.26.(10分)猜想与证明:小强想证明下面的问题:“有两个角(图中的∠B和∠C)相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的∠C和边BC.(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法,并在备用图上恢复原来的样子。方法1:方法2:方法3:(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据平面直角坐标系内的点到轴的距离就是横坐标的绝对值,即可得到结果.【详解】解:∵点的横坐标为-4,∴点到轴的距离是4,故选:B.【点睛】本题考查了平面直角坐标系内点的坐标,属于基础题目.2、C【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答即可.【详解】因为第四象限内的点横坐标为正,纵坐标为负,各选项只有C符合条件,故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项确定m的值.【详解】解:∵∴my=±2•y•5,∴m=±10,故选:D.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4、A【分析】根据不等式的性质即可求出答案.【详解】解:A、∵x<y,∴x-2<y-2,故选项A成立;

B、∵x<y,∴4x<4y,故选项B不成立;

C、∵x<y,∴-x>-y,∴-x+2>-y+2,故选项C不成立;

D、∵x<y,∴-3x>-3y,故选项D不成立;

故选:A.【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.5、D【分析】根据三角形的一个外角等于不相邻的两个内角之和可得结果.【详解】∵中,的外角等于∴∠A+∠B=110°,∴∠A=110°-∠B=75°,故选D.【点睛】本题考查三角形的外角性质,熟记性质是解题的关键.6、B【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,根据全等三角形对应边相等可得AC=AE,求出△DEB的周长=AB.【详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴可得△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长为6cm.故选:B.【点睛】角平分线上的点到角的两边的距离相等与根据HL证明全等,等量代换理清逻辑。7、C【分析】首先应根据勾股定理求得圆柱形水杯的最大线段的长度,即=10,故筷子露在杯子外面的长度至少为多少可求出.【详解】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10(cm),∴筷子露在杯子外面的长度至少为13﹣10=3cm,故选C.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.8、D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A.两项不是同类项,不能合并,错误;B.,错误;C.,错误;D.,正确【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.9、D【分析】根据绝对值和算术平方根非负数性质进行化简即可.【详解】因为所以故选:D【点睛】考核知识点:二次根式.理解二次根式的意义,利用算术平方根非负数性质解决问题是关键点.10、D【分析】在△BDC中,根据三角形外角的性质即可求出∠1的度数.在△ADC中,根据三角形内角和定理即可求出∠2的度数.【详解】在△BDC中,∠1=∠B+∠BCD=65°+15°=80°.在△ADC中,∠2=180°-∠A-∠1=180°-67°-80°=33°.故选D.【点睛】本题考查了三角形内角和定理以及三角形外角的性质.掌握三角形外角等于不相邻的两个内角和是解答本题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据加权平均数的计算方法进行求解即可.【详解】解:3年中该市平均每年的建筑面积=(15×9+30×30+51×21)÷3=1(万平方米).故答案为:1.【点睛】本题考查求加权平均数,掌握求加权平均数的方法是解题的关键.12、【解析】用360°除以每一个外角的度数求出边数即可【详解】360°÷120°=3故答案为3【点睛】此题考查多边形的内角与外角,难度不大13、1【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【详解】∵DE是AB的垂直平分线,

∴DA=DB,

∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=6+4=1,

故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14、135°【分析】本题考查的是平行四边形的性质和等腰三角形的性质解决问题即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADC+∠BCD=180°,∵△CDE是等腰直角三角形,∴∠EDC=∠ECD=45°,则∠ADE+∠BCE=∠ADC+∠BCD-∠EDC-∠ECD=90°,∵AD=DE,∴∠DEA=∠DAE=(180°-∠ADE),∵CE=AD=BC,∴∠CEB=∠CBE=(180°-∠BCE),∴∠DEA+∠CEB=(360°-∠ADE-∠BCE)=×270°=135°∴∠AEB=360°-∠DEC-∠DEA-∠CEB=360°-90°-135°=135°故答案为:135°.15、【分析】取AB的中点E,连接OE,DE,易得O,D之间的最大距离为OE+DE,分别求出OE,DE的长,即可得出答案.【详解】如图,取AB的中点E,连接OE,DE,∵AB=4∴AE=2∵四边形ABCD为矩形∴∠DAE=90°∵AD=2,AE=2∴DE=∵在Rt△AOB中,E为斜边AB的中点,∴OE=AB=2又∵OD≤OE+DE∴点到原点的距离最大值=OE+DE=故答案为:.【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,熟记直角三角形斜边上的中线等于斜边的一半,正确作出辅助线是解题的关键.16、3【分析】延长AE与BC相交点H,先用ASA证明AEC≌HEC,则SHEC=SAEC,求出BH,CH的长度,利用ABC的面积为9,求出ACH的面积为6,即可得到的面积.【详解】解:延长AE与BC相交点H,如图所示∵CD平分∠ACB∴∠ACD=∠BCD∵AE⊥CD∴∠AEC=∠HEC在AEC和HEC中∴AEC≌HEC(ASA)∴AC=CH∴SHEC=SAEC∵BC=6,AC=4∴BH=2,CH=4过A作AK⊥BC,则∵,BC=6,∴AK=3,∴SHCA=,∴SHEC=SAEC=3;故答案为:3.【点睛】本题考查了全等三角形的判定和性质,三角形的角平分线定义,以及三角形面积的计算,熟练掌握全等三角形的判定和性质,正确求出AK的长度是解题的关键.17、-1【分析】根据分式值为零的条件计算即可;【详解】解:由分式的值为零的条件得x+1=0,x﹣2≠0,即x=﹣1且x≠2故答案为:﹣1.【点睛】本题主要考查了分式值为零的条件,准确计算是解题的关键.18、(-3,-2).【解析】试题解析:∵+(b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).考点:1.关于x轴、y轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.三、解答题(共66分)19、见解析【分析】由已知条件加上公共角相等,利用ASA得到△ABD与△ACE全等,利用全等三角形对应边相等即可得证.【详解】在△ABD和△ACE中,,

∴△ABD≌△ACE(ASA),

∴AB=AC,∴∠ABC=∠ACB.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20、-3.【解析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=代入化简后的式子,即可求得原式的值.【详解】解:原式=x2-4+4x-x2=4x-4.当x=时,原式=4×-4=-3.故答案为:-3.【点睛】本题考查整式的混合运算—化简求值.21、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.22、(1)见详解;(2)见详解【分析】(1)根据等腰三角形的性质等边对等角、全等三角形的判定进行推导即可;(2)由(1)的结论根据全等三角形的性质可得,再利用等式的性质可得,最后由等腰三角形的判定等角对等边可得结论.【详解】(1)证明:∵∴在和中∴(2)证明:∵∴∴.【点睛】本题考查了等腰三角形的性质和判定、全等三角形的判定和性质、等式的性质等知识点,体现了逻辑推理的核心素养.23、-1【解析】先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.24、(1)y=﹣x+2;(2)当y<1时,x>1.【分析】(1)采用待定系数法,求解即可;(2)根据函数的增减性,即可得解.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论