版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省灌南私立新知双语学校数学八上期末检测模拟试题题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知中,比它相邻的外角小,则为A. B. C. D.2.在平面直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.3.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后过点D作一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,OC的长为半径作弧,交数轴正半轴于一点,则该点位置大致在数轴上()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间4.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其全等的依据是()A.SAS B.ASA C.AAS D.SSS5.△ABC的三边长分别a、b、c,且a+2ab=c+2bc,△ABC是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形6.图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能7.对于所有实数a,b,下列等式总能成立的是()A. B.C. D.8.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A. B.C. D.9.不等式组12x≤1A. B. C. D.10.不能使两个直角三角形全等的条件是().A.一条直角边及其对角对应相等 B.斜边和两条直角边对应相等C.斜边和一条直角边对应相等 D.两个锐角对应相等11.点A(-3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.下列变形中是因式分解的是()A. B.C. D.二、填空题(每题4分,共24分)13.在实数范围内分解因式:m4﹣4=______.14.在实数π、、﹣、、0.303003…(相邻两个3之间依次多一个0)中,无理数有_____个.15.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.16.若关于x的分式方程有增根,则m的值为_____.17.如图,≌,其中,,则______.18.将一副三角板如图叠放,则图中∠α的度数为______.三、解答题(共78分)19.(8分)如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)当秒时,求的长;(2)求出发时间为几秒时,是等腰三角形?(3)若沿方向运动,则当点在边上运动时,求能使成为等腰三角形的运动时间.20.(8分)如图,三个顶点的坐标分别为A(-2,2),,.(1)画出关于轴对称的;(2)在轴上画出点,使最小.并直接写出点的坐标.21.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=CD;22.(10分)阅读题:在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了。有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,当时,,此时可以得到数字密码1.(1)根据上述方法,当时,对于多项式分解因式后可以形成哪些数字密码?(写出三个).(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为,求出一个由多项式分解因式后得到的密码(只需一个即可).(3)若多项式因式分解后,利用本题的方法,当时可以得到其中一个密码为2434,求的值.23.(10分)阅读解答题:(几何概型)条件:如图1:是直线同旁的两个定点.问题:在直线上确定一点,使的值最小;方法:作点关于直线对称点,连接交于点,则,由“两点之间,线段最短”可知,点即为所求的点.(模型应用)如图2所示:两村在一条河的同侧,两村到河边的距离分别是千米,千米,千米,现要在河边上建造一水厂,向两村送水,铺设水管的工程费用为每千米20000元,请你在上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用.(拓展延伸)如图,中,点在边上,过作交于点,为上一个动点,连接,若最小,则点应该满足()(唯一选项正确)A.B.C.D.24.(10分)如图,在长方形纸片中,.将其折叠,使点与点重合,点落在点处,折痕交于点,交于点.(1)求线段的长.(2)求线段的长.25.(12分)要在某河道建一座水泵站P,分别向河的同一侧甲村A和乙村B送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图),两村的坐标分别为A(1,-2),B(9,-6).(1)若要求水泵站P距离A村最近,则P的坐标为____________;(2)若从节约经费考虑,水泵站P建在距离大桥O多远的地方可使所用输水管最短?(3)若水泵站P建在距离大桥O多远的地方,可使它到甲乙两村的距离相等?26.如图1,已知ED垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.(1)求证:∠AFE=∠CFD;(1)如图1.在△GMN中,P为MN上的任意一点.在GN边上求作点Q,使得∠GQM=∠PQN,保留作图痕迹,写出作法并作简要证明.
参考答案一、选择题(每题4分,共48分)1、B【解析】设构建方程求出x,再利用三角形的内角和定理即可解决问题.【详解】解:设.
由题意:,
解得,
,
,
故选:B.
【点睛】考查三角形的内角和定理,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.2、B【解析】根据关于y轴对称的点横坐标互为相反数,纵坐标相等进行解答即可.【详解】∵(m、n)关于y轴对称的点的坐标是(-m、n),∴点M(-3,-6)关于y轴对称的点的坐标为(3,-6),故选B.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握关于y轴对称的点的坐标特征是解题的关键.3、B【解析】利用勾股定理列式求出OC,再根据无理数的大小判断即可.解答:解:由勾股定理得,OC=,
∵9<13<16,
∴3<<4,
∴该点位置大致在数轴上3和4之间.
故选B.“点睛”本题考查了勾股定理,估算无理数的大小,熟记定理并求出OC的长是解题的关键.4、D【解析】试题分析:本题考查的关键是作角的过程,作角过程中所产生的条件就是证明全等的条件.根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等.解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选D.考点:全等三角形的判定.5、A【详解】∵a+2ab=c+2bc,∴(a-c)(1+2b)=0,∴a=c,b=(舍去),∴△ABC是等腰三角形.故答案选A.6、D【解析】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D.7、B【详解】解:A、错误,∵;B、正确,因为a2+b2≥0,所以=a2+b2;C、错误,是最简二次根式,无法化简;D、错误,∵=|a+b|,其结果a+b的符号不能确定.故选B.8、D【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【详解】解:设他第一次买了x本资料,则这次买了(x+20)本,根据题意得:.故选:D.【点睛】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.9、C【分析】先求出两个不等式的解集,再求其公共解.【详解】解:由12x≤2得:x≤2.由2-x<3得:x>-2.所以不等式组的解集为-2<x≤2故选C.【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、D【解析】根据各选项的已知条件,结合直角三角形全等的判定方法,对选项逐一验证即可得出答案.【详解】解:A、符合AAS,正确;
B、符合SSS,正确;
C、符合HL,正确;
D、因为判定三角形全等必须有边的参与,错误.
故选:D.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11、B【解析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.
故选:B.【点睛】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12、B【分析】根据因式分解的定义:把一个多项式分解成几个整式乘积的形式,逐一进行判断即可.【详解】A.结果不是整式乘积的形式,故错误;B.结果是整式乘积的形式,故正确;C.结果不是整式乘积的形式,故错误;D.结果不是整式乘积的形式,故错误;故选:B.【点睛】本题主要考查因式分解,掌握因式分解的结果是整式乘积的形式是解题的关键.二、填空题(每题4分,共24分)13、【解析】连续用二次平方差公式分解即可.【详解】m4﹣4=(m2+2)(m2-2)=(m2+2)[m2-()2]=.故答案为:.【点睛】本题考查了二次根式的性质及因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.14、3【分析】根据无理数的概念,即可求解.【详解】无理数有:π、、1.313113…(相邻两个3之间依次多一个1)共3个.故答案为:3【点睛】本题主要考查无理数的概念,掌握“无限不循环小数是无理数”是解题的关键.15、9:1【解析】试题分析:由图中可以看出,此时的时间为9:1.考点:镜面对称.16、1【解析】试题分析:增根是化为整式方程后产生的不适合分式方程的根,所以应先增根的可能值,让最简公分母x-1=0,得到x=1,然后代入化为整式方程的方程算出m的值.试题解析:方程两边都乘以(x-1),得x-2(x-1)=m∵原方程有增根∴最简公分母x-1=0解得:x=1,当x=1时,m=1故m的值是1.考点:分式方程的增根.17、【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【详解】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°.故答案为120°.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.18、15°.【解析】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.三、解答题(共78分)19、(1);(2);(3)5.5秒或6秒或6.6秒【分析】(1)根据点、的运动速度求出,再求出和,用勾股定理求得即可;(2)由题意得出,即,解方程即可;(3)当点在边上运动时,能使成为等腰三角形的运动时间有三种情况:①当时(图,则,可证明,则,则,从而求得;②当时(图,则,易求得;③当时(图,过点作于点,则求出,,即可得出.【详解】(1)解:(1),,,;(2)解:根据题意得:,即,解得:;即出发时间为秒时,是等腰三角形;(3)解:分三种情况:①当时,如图1所示:则,,,,,,,秒.②当时,如图2所示:则秒.③当时,如图3所示:过点作于点,则,,,秒.由上可知,当为5.5秒或6秒或6.6秒时,为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.20、(1)见解析;(2)见解析,Q(0,0).【分析】(1)利用关于y轴对称的点的坐标特征得出A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)连接AC1交y轴于Q点,利用两点之间线段最短可确定此时QA+QC的值最小,然后根据坐标系可写出点Q的坐标.【详解】解:(1)如图,△A1B1C1为所求.(2)如图,Q(0,0).【点睛】本题考查了作图—轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.21、详见解析.【分析】根据BE=CF推出BF=CE,然后利用“角角边”证明△ABF和△DCE全等,根据全等三角形对应边相等即可证明.【详解】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(AAS),∴AB=DC(全等三角形对应边相等)22、(1)211428,212814或142128;(2)48100;(3)【分析】(1)将分解因式,再进行组合即可;(2)将分解因式,再根据已知得到即可;(3)根据密码是2434,得到饮水分解后的结果,多项式相乘再使各项系数相等即可解题.【详解】解:(1),当时,,可得数字密码是211428;也可以是212814;142128;(写出一个即给分)(2)由题意得:,解得,而,所以可得数字密码为48100;(3)∵密码为2434,∴当时,∴,即:,∴,解得.【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题;考查了用类比的方法解决问题.23、【模型应用】图见解析,最省的铺设管道费用是10000元;【拓展延伸】D【分析】1.【模型应用】由于铺设水管的工程费用为每千米15000元,是一个定值,现在要在CD上选择水厂位置,使铺设水管的费用最省,意思是在CD上找一点P,使AP与BP的和最小,设是A的对称点,使AP+BP最短就是使最短.2.【拓展延伸】作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小,依据轴对称的性质即可得到∠APC=∠DPE.【详解】1.【模型应用】如图所示.延长到,使,连接交于点,点就是所选择的位置.过作交延长线于点,∵,∴四边形是矩形,∴,,在直角三角形中,,千米,∴最短路线千米,最省的铺设管道费用是(元).2.【拓展延伸】如图,作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小.
由对称性可知:∠DPE=∠FPD,
∵∠APC=∠FPD,
∴∠APC=∠DPE,
∴PA+PE最小时,点P应该满足∠APC=∠DPE,
故选:D.【点睛】本题主要考查了轴对称最短路径问题、对顶角的性质等知识,解这类问题的关键是将实际问题抽象或转化为几何模型,把两条线段的和转化为一条线段,多数情况要作点关于某直线的对称点.24、(1)1;(2)1.【分析】(1)设长为,则,在中由勾股定理列方程,解方程即可求得的长;(2)由得出,由折叠的性质得出,所以,得出【详解】(1)设长为,则.在中,,,即.解得,所以的长为1.(2)∵四边形是长方形,..由折叠,得,..【点睛】本题考查了折叠的性质和应用,勾股定理的性质,解题的关键是灵活运用平行的性质、勾股定理等几何知识来解答.25、(1)(1,0);(2)P点坐标为(3,0)即水泵站P建在距离大桥O3个单位长度的地方可使所用输水管最短;(3)P点坐标为(7,0)即水泵站P建在距离大桥O7个单位长度的地方可使它到甲乙两村的距离相等【分析】(1)依数学原理“点到直线的距离,垂线段最短”分析解题;(2)依数学原理“两点之间线段最短”分析解题;(3)依数学原理“垂直平分线的性质”分析解题.【详解】(1)依数学原理“点到直线的距离,垂线段最短”解题,作AP⊥x轴于点P,即为所求,∵A点坐标为(1,-2),∴P点坐标为(1,0);(2)依数学原理“两点之间线段最短”解题,由题可知,即求最短,作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 寄售协议合同范本
- 仓库弱电改造工程合同模板
- 电摩转卖合同范例
- 综合推广服务合同模板
- 商业厨房定制合同范例
- 瑕疵车卖车合同范例
- 给别人担保合同范例
- 网络短信合同模板
- 沥青清理回收合同范例
- 职业中介合同范例
- 多个居间人的居间合同范本(2024版)
- 职业技术学院无人机测绘技术专业人才培养方案
- 北京市工商行政管理系统2024年面向应届毕业生公开招聘事业单位工作人员历年(高频重点复习提升训练)共500题附带答案详解
- 国有企业采购管理规范 T/CFLP 0027-2020
- 网课智慧树知道《生理学(宁波大学)》章节测试答案
- GB/T 17215.301-2024电测量设备(交流)特殊要求第1部分:多功能电能表
- 19物质结构式元素推断解题模型(原卷版+解析)
- (正式版)HGT 20593-2024 钢制化工设备焊接与检验工程技术规范
- 遇事如何不推诿培训课件
- 肿瘤病人临终关怀护理
- 网格员工作汇报 (第二稿)
评论
0/150
提交评论