内蒙古乌拉特前旗六中学2025届八年级数学第一学期期末达标检测试题含解析_第1页
内蒙古乌拉特前旗六中学2025届八年级数学第一学期期末达标检测试题含解析_第2页
内蒙古乌拉特前旗六中学2025届八年级数学第一学期期末达标检测试题含解析_第3页
内蒙古乌拉特前旗六中学2025届八年级数学第一学期期末达标检测试题含解析_第4页
内蒙古乌拉特前旗六中学2025届八年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古乌拉特前旗六中学2025届八年级数学第一学期期末达标检测试题期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的菱形是正方形D.对角线相等的平行四边形是矩形2.矩形的面积为18,一边长为,则另一边长为()A. B. C. D.243.如图是金堂县赵镇某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是 B.中位数是C.平均数是 D.众数是4.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A. B. C. D.5.等腰三角形的底角等于,则该等腰三角形的顶角度数为()A. B. C.或 D.或6.若等腰三角形的两边长分别是2和6,则这个三角形的周长是()A.14 B.10 C.14或10 D.以上都不对7.下列命题中不正确的是()A.全等三角形的对应边相等 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等8.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36° B.54° C.72°或36° D.54°或126°9.下列各数,是无理数的是()A. B. C. D.10.在△ABC中,AB=AC,∠A=80°,进行如下操作:①以点B为圆心,以小于AB长为半径作弧,分别交BA、BC于点E、F;②分别以E、F为圆心,以大于12③作射线BM交AC于点D,则∠BDC的度数为().A.100° B.65° C.75° D.105°11.下列坐标系表示的点在第四象限的是()A. B. C. D.12.计算:21+79=()A.282.6 B.289 C.354.4 D.314二、填空题(每题4分,共24分)13.如图,在中,,按以下步骤作图:分别以点和点为圆心,大于一半长为半径作画弧,两弧相交于点和点,过点作直线交于点,连接,若,,则的周长为_____________________.14.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).15.计算=_____.16.把二次根式化成最简二次根式得到的结果是______.17.定义运算“※”:a※b=,若5※x=2,则x的值为___.18.已知关于x,y的方程组的解满足不等式2x+y>8,则m的取值范围是____.三、解答题(共78分)19.(8分)先化简:,其中从,,中选一个恰当的数求值.20.(8分)我们来探索直角三角形分割成若干个等腰三角形的问题.定义:将一个直角三角形分割成个等腰三角形的分割线叫做分线.例如将一个直角三角形分割成个等腰三角形,需要条分割线,每一条分割线都是分线.(1)直角三角形斜边上的什么线一定是分线?(2)如图1是一个任意直角,,请画出分线;(3)如图2,中,,,,请用两种方法画出分线,并直接写出每种方法中分线的长.21.(8分)如图,在平行四边形中,分别为边的中点,是对角线,过点作交的延长线于点.(1)求证:.(2)若,①求证:四边形是菱形.②当时,求四边形的面积.22.(10分)如图,和中,,,,点在边上.(1)如图1,连接,若,,求的长度;(2)如图2,将绕点逆时针旋转,旋转过程中,直线分别与直线交于点,当是等腰三角形时,直接写出的值;(3)如图3,将绕点顺时针旋转,使得点在同一条直线上,点为的中点,连接.猜想和之间的数量关系并证明.23.(10分)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.24.(10分)定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.25.(12分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.26.如图1是某种双层圆柱形水槽的轴截面示意图,水槽下层有一块铁块立放其中(圆柱形铁块的下底面完全落在槽底面上).现将水槽上层的水,通过中间的圆孔匀速注入下层,水槽中上下层水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:(1)读图并直接写出上层水起始的深度;(2)注水多少时间,上下层的水一样深?(3)若水槽底面积为24平方厘米(壁厚不计),求出铁块的体积.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据正方形,平行四边形,矩形,菱形的判定定理判断即可.【详解】解:A、一组对边平行且相等的四边形是平行四边形,故正确;B、对角线互相垂直且平分的四边形是菱形,故错误;C、对角线相等的菱形是正方形,故正确;D、对角线相等的平行四边形是矩形,故正确;故选:B.【点睛】本题考查了正方形,平行四边形,矩形,菱形的判定定理,熟练掌握判定定理是解题的关键.2、C【分析】根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】解:∵矩形的面积为18,一边长为,

∴另一边长为=,

故选:C.【点睛】本题考查矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解题的关键.3、D【分析】根据折线统计图中的数据及极差、中位数、平均数、众数的概念逐项判断数据是否正确即可.【详解】由图可得,极差:26-16=10℃,故选项A错误;这组数据从小到大排列是:16、18、20、22、24、24、26,故中位数是22℃,故选项B错误;平均数:(℃),故选项C错误;众数:24℃,故选项D正确.故选:D.【点睛】本题考查折线统计图及极差、中位数、平均数、众数,明确概念及计算公式是解题关键.4、D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.5、B【分析】根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【详解】解:∵三角形为等腰三角形,且底角为50°,∴顶角=180°﹣50°×2=80°.故选:B.【点睛】本题考查等腰三角形的性质,三角形内角和定理,题目比较简单,理解等腰三角形两个底角相等是解题关键.6、A【分析】分腰长为2和腰长为6两种情况,结合三角形三边关系进行讨论即可求得答案.【详解】①若2为腰,2+2<6不能构成三角形;②若6为腰,满足构成三角形的条件,则周长为6+6+2=1.故选A.7、D【解析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D.8、D【解析】根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.【详解】①如图1,等腰三角形为锐角三角形,

∵BD⊥AC,∠ABD=36°,

∴∠A=54°,

即顶角的度数为54°.

②如图2,等腰三角形为钝角三角形,

∵BD⊥AC,∠DBA=36°,

∴∠BAD=54°,

∴∠BAC=126°.

故选D.【点睛】本题考查了直角三角形的性质、等腰三角形的性质,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.9、D【解析】把各项化成最简之后,根据无理数定义判断即可.【详解】解:A项,,为有理数;B项是有限小数,为有理数;C项为分数,是有理数;D项是无限不循环小数,为无理数.故选:D.【点睛】本题主要考查无理数的定义,理解掌握定义是解答关键.10、D【解析】利用等腰三角形的性质结合三角形内角和定理得出∠ABC=∠C=50°,再利用角平分线的性质与作法得出即可.【详解】∵AB=AC,∠A=80°,∴∠ABC=∠C=50°,由题意可得:BD平分∠ABC,则∠ABD=∠CBD=25°,∴∠BDC的度数为:∠A+∠ABD=105°.故选D.【点睛】此题主要考查了基本作图以及等腰三角形的性质,得出BD平分∠ABC是解题关键.11、C【分析】根据平面直角坐标系中各象限点的特点逐项判断即可.【详解】解:A.在x轴上,不合题意;B.在第一象限,不合题意;C.在第四象限,符合题意;D.在第二象限,不合题意.故选:C【点睛】本题考查了平面直角坐标系各象限点的特征,熟练掌握平面直角坐标各象限点的符号特点是解题关键.12、D【分析】利用乘法分配律即可求解.【详解】原式=故选:D.【点睛】本题主要考查乘法运算律在实数运算中的应用,掌握乘法分配律是解题的关键.二、填空题(每题4分,共24分)13、1【分析】利用基本作图可以判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到的周长=AB+AC,再把,代入计算即可.【详解】解:由作法得MN垂直平分BC,则DC=DB,故答案为:1.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.14、xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.15、10【分析】根据零指数幂的意义以及负整数幂的意义即可求出答案.【详解】解:原式=9+1=10,故答案为:10【点睛】本题考查的知识点是零指数幂以及负整指数幂,掌握零指数幂的意义以及负整数幂的意义是解此题的关键.16、3【分析】根据二次根式的性质进行化简即可.【详解】解:==3.故答案为:3.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.17、2.5或1.【详解】解:当5>x时,5※x=2可化为,解得x=2.5,经检验x=2.5是原分式方程的解;当5<x,5※x=2可化为,解得x=1,经检验x=1是原分式方程的解.故答案为:2.5或1.【点睛】本题考查了新定义运算,弄清题中的新定义是解本题的关键,解题时注意分类讨论思想.18、m<﹣1.【分析】先解方程组,然后将x、y的值代入不等式解答.【详解】解:解方程组得x=2m﹣1,y=4﹣5m,将x=2m﹣1,y=4﹣5m代入不等式2x+y>8得4m﹣2+4﹣5m>8,∴m<﹣1.故答案为:m<﹣1.【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.三、解答题(共78分)19、,2【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把代入计算即可求出值.【详解】解:因为m+1,m-1,m-2所以m,m,m当时,原式.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.20、(1)中线;(2)画图见解析;(3)方法一:画图见解析,,.方法二:画图见解析,,【分析】(1)根据直角三角形斜边中线的性质即可解决问题;(2)作出斜边上的高,再作出两个小直角三角形的斜边的中线即可;(3)根据三分线的定义,即可画出图形,然后根据所画图形求解即可;【详解】解:(1)直角三角形斜边中线是斜边的一半,故答案为中线.(2)如图,,、分别为、的中点,则、、即为分线.(3)方法一:如图,平分,为的中点,∵,,∴∠ABC=60°,∵,平分,∴∠ABD=∠CBD=30°,∴,设CD=x,则BD=2x,∴x2+1=(2x)2,∴,∴,∵为的中点,∴.方法二:如图,,为的垂直平分线与的交点,∵∴,∴∠EBD=30°.∵为的垂直平分线与的交点,∴EB=ED,∴,∴∠AED=30°.∵,∴,∴DE=AD.∵,,∵,,∴AB=2,∴AC=,∴.【点睛】本题考查了新定义问题、等腰三角形的判定和性质、含30°角的性质、勾股定理、直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题.21、(1)见解析;(2)①见解析;②1.【分析】(1)由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,又由E、F分别为边AB、CD的中点,易得DF∥BE,DF=BE,即可判定四边形DEBF为平行四边形,则可证得DE∥BF;

(2)①由∠G=90°,AG∥DB,易证得△DBC为直角三角形,又由F为边CD的中点,即可得BF=DC=DF,则可证得:四边形DEBF是菱形;

②根据矩形的判定定理得到四边形AGBD是矩形,根据三角形的面积公式即可得到结论.【详解】证明:(1)∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD,

∵E、F分别为AB、CD的中点,

∴DF=DC,BE=AB,

∴DF∥BE,DF=BE,

∴四边形DEBF为平行四边形,

∴DE∥BF;

(2)①∵AG∥BD,

∴∠G=∠DBC=90°,

∴△DBC为直角三角形,

又∵F为边CD的中点.

∴BF=DC=DF,

又∵四边形DEBF为平行四边形,

∴四边形DEBF是菱形;

②∵AD∥BG,AG∥BD,∠G=90°,

∴四边形AGBD是矩形,

∴S△ABD=S△ABG=×3×4=1,

∵E为边AB的中点,

∴S△BDE=S△ABD=3,

∴四边形DEBF的面积=2S△BDE=1.【点睛】此题考查菱形的判定,平行四边形的判定与性质以及直角三角形的性质.解题关键在于掌握数形结合思想的应用.22、(1);(2)22.5°、112.5°、45°;(3)AE+CF=.【分析】(1)根据勾股定理求出AB的长,可得CE,再用勾股定理可得FC的长度;(2)分别当CM=CN,MN=CN,MN=MC时,进行讨论即可;(3)连接AP,延长AE交CF于点Q,由四点共圆可知∠AEP=45°,从而推出A、E、Q共线,再由垂直平分线的判定可知AQ垂直平分CF,即得△ABF为等腰三角形,得到AP⊥BF,则△AEP为等腰直角三角形,得到AE和PE的关系,再根据EF和FC的关系得到AE、CF、BP三者的数量关系.【详解】解:(1),,,∴AB==5,∴EC=EF=3,∴FC==;(2)由题意可知△CMN中不会形成MN=MC的等腰三角形,①当CM=CN时,∠CNE=(180°-45°)=67.5°,∵∠NEC=90°,∴α=∠ACE=22.5°;②当CM=CN时,α=∠ACE,∵∠ACB=45°,∴∠CNM=∠CMN=×45°=22.5°,∵∠CEM=90°,∴∠ECM=67.5°,∴α=∠ACE=112.5°;③当CN=MN时,此时CE与BC共线,α=∠BCA=45°;综上:当是等腰三角形时,α的值为:22.5°、112.5°、45°.(3)AE+CF=连接AP,延长AE交CF于点Q,由题意可得:∠CEB=∠BAC=90°,∴A、E、C、B四点共圆,可得:∠AEB=∠ACB=45°,且∠CEQ=45°,∴∠EQC=90°,可知点A在CF的垂直平分线上,∴AC=AF=AB,∵点P是BF中点,∴AP⊥BF,∴△APE为等腰直角三角形,∴AE=,又∵△EFC为等腰直角三角形,∴CF=,∴+==AE+CF,∵BP=PF,∴AE+CF=.【点睛】本题是旋转综合题,涉及了勾股定理,等腰三角形的性质,垂直平分线的性质,旋转的性质,综合性较强,难度较大,作出辅助线是解本题的难点,是一道很好的压轴题.23、(1)(,2);(2)y=x﹣;(3)E的坐标为(,)或(6,8)【分析】(1)把点E的纵坐标代入直线解析式,求出横坐标,得到点E的坐标,根据融合点的定义求求解即可;

(2)设点E的坐标为(a,a+2),根据融合点的定义用a表示出x、y,整理得到答案;

(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.24、(1)定点O是△ABC的外心有道理,理由见解析;(2)见解析【分析】(1)连接、、,如图①,根据线段垂直平分线的性质得到,,则,从而根据三角形的外心的定义判断点是的外心;(2)连接、、、,如图②,利用等边三角形的性质得到,,再计算出,接着证明得到,同理可得,所以,然后根据三角形外心的定义得到点是的外心.【详解】(1)解:定点是的外心有道理.理由如下:连接、、,如图①,,的垂直平分线得到交点,,,,点是的外心;(2)证明:连接、、、,如图②,点为等边的外心,,,,,在和中,,,同理可得,,点是的外心.【点睛】本题考查了线段垂直平分线性质和全等三角形的判定、等边三角形的性质.掌握线段垂直平分线性质和构造三角形全等是解题关键.25、(1)50;(2)①6;②1【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;②当点P与M重合时,△PBC周长的值最小,于是得到结论.试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论