2025届桂林市重点中学数学八上期末调研试题含解析_第1页
2025届桂林市重点中学数学八上期末调研试题含解析_第2页
2025届桂林市重点中学数学八上期末调研试题含解析_第3页
2025届桂林市重点中学数学八上期末调研试题含解析_第4页
2025届桂林市重点中学数学八上期末调研试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届桂林市重点中学数学八上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A. B.2 C. D.2.已知:如图,是的中线,,点为垂足,,则的长为()A. B. C. D.3.下列函数关系中,随的增大而减小的是()A.长方形的长一定时,其面积与宽的函数关系B.高速公路上匀速行驶的汽车,其行驶的路程与行驶时间的函数关系C.如图1,在平面直角坐标系中,点、,的面积与点的横坐标的函数关系D.如图2,我市某一天的气温(度)与时间(时)的函数关系4.已知,则的值为A.5 B.6 C.7 D.85.以下列各组数为边长构造三角形,不能构成直角三角形的是()A.12,5,13 B.40,9,41 C.7,24,25 D.10,20,166.要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠37.禽流感病毒的形状一般为球形,直径大约为,该直径用科学记数法表示为()A. B. C. D.8.如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12 B.6 C.3 D.19.如图,若,则的度数是()A. B. C. D.10.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<011.一个直角三角形的两条边长分别为3cm,5cm,则该三角形的第三边长为().A.4cm B.8cm C.cm D.4cm或cm12.在平面直角坐标系中,点与点关于轴对称,则()A., B.,C., D.,二、填空题(每题4分,共24分)13.如图,和都是等腰三角形,且,当点在边上时,_________________度.14.在平面直角坐标系中,直线l1∥l2,直线l1对应的函数表达式为,直线l2分别与x轴、y轴交于点A,B,OA=4,则OB=_____.15.如果a+b=5,ab=﹣3,那么a2+b2的值是_____.16.分式有意义的条件是______.17.若分式的值为0,则的值为________.18.如图,∠ABC=60°,AB=3,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是钝角三角形时,t满足的条件是_____.三、解答题(共78分)19.(8分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.20.(8分)为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?21.(8分)已知在平面直角坐标系中有,,三点,请回答下列问题:(1)在坐标系内描出以,,三点为顶点的三角形.(2)求的面积.(3)画出关于轴对称的图形22.(10分)(1)请画出关于轴对称的(其中分别是的对应点,不写画法);(2)直接写出三点的坐标:.(3)计算△ABC的面积.23.(10分)某县教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了该县八年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出参加抽样调查的八年级学生人数,并将频数直方图补充完整.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生人,请你估计“活动时间不少于天”的大约有多少人?24.(10分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?25.(12分)如图,,点、分别在、上运动(不与点重合).(1)如图1,是的平分线,的反方向延长线与的平分线交于点.①若,则为多少度?请说明理由.②猜想:的度数是否随、的移动发生变化?请说明理由.(2)如图2,若,,则的大小为度(直接写出结果);(3)若将“”改为“()”,且,,其余条件不变,则的大小为度(用含、的代数式直接表示出米).26.已知:如图,中,∠ABC=45°,于D,BE平分∠ABC,且于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G(1)求证:BF=AC;(2)判断CE与BF的数量关系,并说明理由

参考答案一、选择题(每题4分,共48分)1、D【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出AD=CE,再利用勾股定理就可以求出BC的值.【详解】解:∵BE⊥CE,AD⊥CE,

∴∠E=∠ADC=90°,

∴∠EBC+∠BCE=90°.

∵∠BCE+∠ACD=90°,

∴∠EBC=∠DCA.

在△CEB和△ADC中,

∴△CEB≌△ADC(AAS),

∴CE=AD=3,在Rt△BEC中,,故选D.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.2、B【分析】先证△BDF≌△CDE,得到DE=3,再证∠2=60°,根据30°角所对的直角边是斜边的一半,求出DC的长,再求BC的长即可【详解】解:∵AD是△ABC中线,在△BDF和△CDE中,

∴△BDF≌△CDE(AAS).∴DF=DE,∵EF=6,

∴DE=3,

∵,∠1+∠2=180°,∴∠2=60°,∴∠DCE=30°,∴DC=6,∴BC=12,故选B.【点睛】本题考查全等三角形的判断和性质,垂直的定义,中线的定义,解题的关键是熟练掌握全等三角形的判定.3、C【分析】首先要明确各选项的函数关系,再根据函数的性质进行判断即可.【详解】A.长方形的长一定时,其面积与宽成正比例关系,此时随的增大而增大,故选项A不符合题意;B.高速公路上匀速行驶的汽车,其行驶的路程与行驶时间成正比例关系,此时随的增大而增大,故选项B不符合题意;C.如图1,在平面直角坐标系中,点、,的面积与点的横坐标成反比关系,此时随的增大而减小,故选项C符合题意;D.如图2,我市某一天的气温(度)与时间(时)的函数关系中无法判断,y与x的关系,故选项D不符合题.故选:C.【点睛】此题主要考查了函数值与自变量之间的关系,熟练掌握各选项的函数关系是解题的关键.4、C【分析】根据完全平方公式的变形即可求解.【详解】∵∴即∴=7,故选C.【点睛】此题主要考查完全平方公式的运用,解题的关键是熟知完全平方公式的变形及运用.5、D【分析】根据勾股定理的逆定理,一个三角形的三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形,据此即可判断.【详解】A、因为,故能构成直角三角形,此选项错误;B、因为,故能构成直角三角形,此选项错误;C、因为,故能构成直角三角形,此选项错误;D、因为,故不能构成直角三角形,此选项正确;故选:D.【点睛】本题考查勾股定理的逆定理,关键知道两条较小边的平方和等于较大边的平方,这个三角形就是直角三角形.6、D【分析】本题主要考查分式有意义的条件:分母不能为1.【详解】∵x-3≠1,∴x≠3,故选:D.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.7、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为(,n为正整数).与较大数的科学记数法不同的是其所用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、B【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BD=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,CG=AB=×24=12,∴MG=CG=×12=6,∴HN=6,故选B.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.9、B【分析】先根据等边对等角求出,再根据外角的性质,利用即可求解.【详解】解:又故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角,正确的分析题意,进行角的计算,即可求出正确答案.10、C【解析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.11、D【分析】根据已知的两边长,利用勾股定理求出第三边即可.注意3cm,5cm可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当3cm,5cm时两条直角边时,第三边==,当3cm,5cm分别是一斜边和一直角边时,第三边==4,所以第三边可能为4cm或cm.故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.12、A【分析】利用关于y轴对称点的性质得出答案.【详解】解:∵点A(m,1)与点B(2,n)关于y轴对称,

∴m=-2,n=1.

故选:A.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键,对称点的坐标规律是:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(1)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题(每题4分,共24分)13、1【分析】先根据“SAS”证明△ABE≌△CBD,从而∠BAE=∠C.再根据等腰三角形的两底角相等求出∠C的度数,然后即可求出∠BAE的度数.【详解】∵和都是等腰三角形,∴AB=BC,BE=BD,∵,∴∠ABE=∠CBD,在△ABE和△CBD中,∵AB=BC,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD,∴∠BAE=∠C.∵AB=BC,∠ABC=100°,∴∠C=(180°-100°)÷2=1°,∴∠BAE=1°.故答案为:1.【点睛】本题主要考查了等腰三角形的定义,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.14、1【详解】∵直线∥,直线对应的函数表达式为,∴可以假设直线的解析式为,∵,∴代入得到∴∴故答案为1.15、31【分析】先根据完全平方公式:可得:,再将a+b=5,ab=﹣3代入上式计算即可.【详解】因为,所以,将a+b=5,ab=﹣3代入上式可得:,故答案为:31.【点睛】本题主要考查完全平方公式,解决本题的关键是要熟练应用完全平方公式进行灵活变形.16、【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】根据题意得:,解得:x≠1;故答案为:x≠1.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解答本题的关键.17、1【分析】根据分式值为零的条件,分子为零且分母不为零,求解.【详解】解:若分式的值为0∴a-1=0且a+1≠0解得:a=1故答案为:1.【点睛】本题考查分式为零的条件,掌握分式值为零时,分子为零且分母不能为零是解题关键.18、0<t<或t>1.【分析】过A作AP⊥BC和过A作P'A⊥AB两种情况,利用含30°的直角三角形的性质解答.【详解】解:①过A作AP⊥BC时,∵∠ABC=10°,AB=3,∴BP=,∴当0<t<时,△ABP是钝角三角形;②过A作P'A⊥AB时,∵∠ABC=10°,AB=3,∴BP'=1,∴当t>1时,△ABP'是钝角三角形,故答案为:0<t<或t>1.【点睛】此题考查含30°的直角三角形的性质,关键是根据在直角三角形中,30°角所对的直角边等于斜边的一半解答.三、解答题(共78分)19、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【详解】解:证明:∵DE⊥AB,

∴∠AED=90°=∠ACB,

又∵AD平分∠BAC,

∴∠DAE=∠DAC,

∵AD=AD,

∴△AED≌△ACD,

∴AE=AC,

∵AD平分∠BAC,

∴AD⊥CE,

即直线AD是线段CE的垂直平分线.【点睛】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.20、张老师骑自行车每小时走15千米【分析】设张老师骑自行车的速度为x千米/小时,则自驾车的速度为3x/小时,根据时间=路程÷速度结合骑自行车比自驾车多用小时,可得到关于x的分式方程,解之经检验后即可得出结论.【详解】设张老师骑自行车的速度为x千米/小时,则自驾车的速度为3x/小时,根据题意得:,解得:,经检验,是所列分式方程的解,且符合题意.答:张老师骑自行车每小时走15千米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1)见解析;(2)5;(3)见解析.【分析】(1)先找出A、B、C三点的坐标,依次连接即可得到△ABC;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)分别作出点A、B、C关于x轴对称的点A'、B'、C',然后顺次连接即可;【详解】解:(1)以,,三点为顶点的△ABC如下图所示;(2)依题意,得轴,且,∴;(3)关于轴对称的图形,如下图所示.【点睛】本题考查了根据轴对称作图以及点的坐标的表示方法.作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;

③按原图形中的方式顺次连接对称点.22、(1)A/(2,3),B/(3,1),C/(-1,-2).(2)5.5.【解析】试题分析:分别找出点关于轴的对应点然后顺次连接即可得到

利用平面直角坐标系写出点的坐标即可;

利用所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可.试题解析:如图所示:A′(2,3),B′(3,1),C′(−1,−2);23、(1)调查的初一学生人数200人;补图见解析;(2)中位数是4(天),众数是4(天);(3)估计“活动时间不少于5天”的大约有2700人.【分析】(1)由参加实践活动为2天的人数除以所占的百分比即可求出八年级学生总数,根据单位1减去其他的百分比求出a的值,由学生总数乘以活动实践是5天与7天的百分比求出各自的人数,补全统计图即可;(2)出现次数最多的天数为4天,故众数为4;将实践活动的天数按照从小到大顺心排列,找出最中间的两个天数,求出平均数即可得到中位数;(3)求出活动时间不少于4天的百分比之和,乘以6000即可得到结果.【详解】解:(1)调查的初一学生人数:20÷10%=200(人),“活动时间不少于5天”的人数为:200×(1-15%-10%-5%-15%-30%)=50(人),“活动时间不少于7天”的人数为:200×5%=10(人),补全统计图如下:(2)根据中位数的概念,中位数应是第100人的天数和101人的天数的平均数,即中位数是4(天),根据众数的概念,则众数是人数最多的天数,即众数是4(天);(3)估计“活动时间不少于5天”的大约有:(200﹣20﹣30﹣60)÷200×6000=2700(人).【点睛】本题考查了频率分布直方图和扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24、(1)甲、乙两人每天各加工40、60个这种零件;(2)甲至少加工了1天.【分析】(1)设乙每天加工个这种零件,则甲每天加工个这种零件,然后根据题意列出分式方程,求解并检验即可得出答案;(2)设甲加工了天,根据题意可列出一个关于y的不等式,解不等式即可找到y的最小值.【详解】(1)设乙每天加工个这种零件,则甲每天加工个这种零件.根据题意得解得检验:当时,.所以,原分式方程的解为所以答:甲、乙两人每天各加工40、60个这种零件.(2)设甲加工了天.根据题意得解得∴至少取1.答:甲至少加工了1天.【点睛】本题主要考查分式方程的应用和一元一次不等式的应用,能够根据题意列出分式方程和不等式是解题的关键.25、(1)①45°,理由见解析;②∠D的度数不变;理由见解析(2)30;(3)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD=∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=+β,由∠D=∠ABC-∠BAD得出答案.【详解】解:(1)①45°∵∠BAO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论