2025届湖北省襄阳七中学数学八上期末统考模拟试题含解析_第1页
2025届湖北省襄阳七中学数学八上期末统考模拟试题含解析_第2页
2025届湖北省襄阳七中学数学八上期末统考模拟试题含解析_第3页
2025届湖北省襄阳七中学数学八上期末统考模拟试题含解析_第4页
2025届湖北省襄阳七中学数学八上期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省襄阳七中学数学八上期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列命题中,逆命题是真命题的是()A.全等三角形的对应角相等; B.同旁内角互补,两直线平行;C.对顶角相等; D.如果,那么2.在下列四个图案中,是轴对称图形的是()A. B. C. D.3.4的算术平方根是()A.±4 B.4 C.±2 D.24.下列运算正确的是()A. B. C.α8α4=α2 D.5.若关于的方程的解为,则等于()A. B.2 C. D.-26.要说明命题“若ab,则a2b2”是假命题,能举的一个反例是()A.a3,b2 B.a4,b1 C.a1,b0 D.a1,b27.计算(﹣2x2y3)•3xy2结果正确的是()A.﹣6x2y6 B.﹣6x3y5 C.﹣5x3y5 D.﹣24x7y58.如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个9.以下列各组线段为边作三角形,不能构成直角三角形的是()A.3,5,6 B.3,4,5 C.5,12,13 D.9,40,4110.已知x2+16x+k是完全平方式,则常数k等于()A.64 B.48 C.32 D.16二、填空题(每小题3分,共24分)11.若x2+ax+4是完全平方式,则a=_____.12.化简得.13.我县属一小为了师生继承瑶族非物质文化遗产的长鼓舞,决定购买一批相关的长鼓.据了解,中长鼓的单价比小长鼓的单价多20元,用10000元购买中长鼓与用8000元购买小长鼓的数量相同,则中长鼓为_______元,小长鼓的单价为_______元.14.如图,△ABC中,∠C=90°,∠ABC=30°,BC=1,点D是边BC上一动点,以AD为边作等边△ADE,使点E在∠C的内部,连接BE.下列结论:①AC=1;②EB=ED;③当AD平分∠BAC时,△BDE是等边三角形;④动点D从点C运动到点B的过程中,点E的运动路径长为1.其中正确的是__________.(把你认为正确结论的序号都填上)15.已知直线与直线的交点是,那么关于、的方程组的解是______.16.如图,在平面直角坐标系中有一个△ABC,点A(-1,3),B(2,0),C(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.17.若分式的值为零,则x=______.18.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.三、解答题(共66分)19.(10分)我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC的一半吗?若改变,说明理由;若不变,说明理由.20.(6分)已知:如图在四边形ABCD中,AB∥CD,AD∥BC,延长CD至点E,连接AE,若,求证:21.(6分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.(8分)计算:(1)﹣(1﹣)0;(2)3.23.(8分)在如图所示的平面直角坐标系中,网格小正方形的边长为1.(1)作出关于轴对称的,并写出点的坐标;(2)是轴上的动点,利用直尺在图中找出使周长最短时的点,保留作图痕迹,此时点的坐标是______24.(8分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC=2时,求证:△ABD≌△DCE;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.25.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1、B1、C1的坐标.(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.26.(10分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793918589______乙89969180____________(1)将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按,计算哪个学生数学综合素质测试成绩更好?请说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C选项不符合题意;D.如果,那么的逆命题为如果,那么是假命题,所以D选项不符合题意.故选:B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.2、C【解析】轴对称图形的概念:一个图形沿一条直线折叠,直线两旁的图形能够完全重合的图形叫做轴对称图形.根据轴对称图形的概念不难判断只有C选项图形是轴对称图形.故选C.点睛:掌握轴对称图形的概念.3、D【分析】如果一个正数x的平方等于a,即x2=a(x>0),那么这个正数x叫做a的算术平方根.【详解】解:4的算术平方根是2.故选D.【点睛】本题考查了算术平方根的定义,熟练掌握相关定义是解题关键.4、D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A.两项不是同类项,不能合并,错误;B.,错误;C.,错误;D.,正确【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.5、A【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含a的新方程,解此新方程可以求得a的值.【详解】把x=1代入方程得:,解得:a=;经检验a=是原方程的解;故选A.【点睛】此题考查分式方程的解,解题关键在于把x代入解析式掌握运算法则.6、D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A、a=3,b=2时.满足a>b,则a2>b2,不能作为反例,错误;B、a=4,b=-1时.满足a>b,则a2>b2,不能作为反例,错误;C、a=1,b=0时.满足a>b,则a2>b2,不能作为反例,错误;D、a=1,b=-2时,a>b,但a2<b2,能作为反例,正确;故选:D.【点睛】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.7、B【解析】根据单项式乘单项式法则直接计算即可.【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,故选:B.【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.8、C【分析】由等边三角形的性质得出BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,易证∠BCE=∠FCA=150°,由SAS证得△BCE≌△FCA,得出AF=BE,∠AFC=∠EBC,由∠FCA=150°,得出∠FAC<30°,则∠FAE=∠FAC+∠CAE<90°,由∠BFD<∠BFC,得出∠BFD<∠CBF,则DF>BD,即可得出结果.【详解】∵△ACE和△BCF是等边三角形,∴BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,∴∠BCE=90°+60°=150°,∠FCA=60°+90°=150°,∴∠BCE=∠FCA.在△BCE和△FCA中,∵,∴△BCE≌△FCA(SAS),∴AF=BE,∠AFC=∠EBC,故①、②正确;∵∠FCA=60°+90°=150°,∴∠FAC<30°.∵∠CAE=60°,∴∠FAE=∠FAC+∠CAE<90°,故③错误;∵∠BFD<∠BFC,∴∠BFD<∠CBF,∴DF>BD,故④错误.故选:C.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质、三角形内角和定理、三角形三边关系等知识;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.9、A【解析】根据勾股定理逆定理依次计算即可得到答案.【详解】A.,故不能构成直角三角形;B.,能构成直角三角形;C.,能构成直角三角形;D.,能构成直角三角形;故选:A.【点睛】此题考查勾股定理的逆定理,熟记定理并正确计算是解题的关键.10、A【详解】∵x2+16x+k是完全平方式,∴对应的一元二次方程x2+16x+k=1根的判别式△=1.∴△=162-4×1×k=1,解得k=2.故选A.也可配方求解:x2+16x+k=(x2+16x+2)-2+k=(x+8)2-2+k,要使x2+16x+k为完全平方式,即要-2+k=1,即k=2.二、填空题(每小题3分,共24分)11、±1.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去a和2积的2倍,故a=±1.【详解】解:中间一项为加上或减去a和2积的2倍,故a=±1,故答案为±1.【点睛】本题考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.12、.【解析】试题分析:原式=.考点:分式的化简.13、100;1【分析】设小长鼓的单价为x元,则中长鼓的单价为(x+20)元,根据“用10000元购买中长鼓与用8000元购买小长鼓的数量相同”列出分式方程,并解方程即可得出结论.【详解】解:设小长鼓的单价为x元,则中长鼓的单价为(x+20)元根据题意可得解得:x=1经检验:x=1是原方程的解中长鼓的单价为1+20=100元故答案为:100;1.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.14、②③④【分析】作EF⊥AB垂足为F,连接CF,可证△EAF≌△DAC,推出点E在AB的垂直平分线上,根据三线合一可证为等腰三角形,即可得到EB=ED,由AD平分∠BAC计算∠CAD=∠EAB=∠EBA=30°,从而证得△BDE是等边三角形,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.【详解】解:∵△ABC中,∠C=90°,∠ABC=30°,BC=1,∴,故①错误;如图,作EF⊥AB垂足为F,连接CF,∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,∵△ADE是等边三角形,∴AE=AD=ED,∠EAD=60°,∴∠EAD=∠BAC,∴∠EAF=∠DAC,在△EAF和△DAC中,,∴△EAF≌△DAC,∴AF=AC,EF=CD,∵,∴,∴F为AB的中点,∴EF为的中线,又∵,∴,∵,∴,故②正确;∵AD平分∠BAC,∴,∴,∵,∴,∵,∴,又∵,∴是等边三角形,故③正确;∵,,∴点E在AB的垂直平分线上,∴在点D从点C移动至点B的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点C移动至点B的过程中,点E移动的路线为1,故④正确;故答案为:②③④.【点睛】本题考查直角三角形性质,等边三角形性质,利用这些知识证明三角形全等为关键,掌握直角三角形和等边三角形的性质为解题关键.15、【分析】把点(1,b)分别代入直线和直线中,求出a、b的值,再将a、b的值代入方程组,求方程组的解即可;【详解】解:把点(1,b)分别代入直线和直线得,,解得,将a=-4,b=-3代入关于、的方程组得,,解得;【点睛】本题主要考查了一次函数与二元一次方程组,掌握一次函数与二元一次方程组是解题的关键.16、(1)作图见解析.(2)9.【分析】(1)根据关于y轴对称的点的坐标特点画出△A1B1C1即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.【详解】解:(1)如图所示;(2)S△ABC=4×5-×2×4-×3×3-×1×5=20-4--=9.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.17、-1【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得

|x|-1=2且x-1≠2,

解得,x=-1.

故答案是:-1.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.18、【分析】根据旋转的性质可得出,在中利用勾股定理求解即可.【详解】解:∵,,,∴,∵将绕点逆时针旋转得到,∴∴∴在中,.故答案为:.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出是解此题的关键.三、解答题(共66分)19、(1)AE=;(2)AD=2,S△BDF=8;(3)不变,理由见解析【分析】(1)根据D为AB的中点,求出AD的长,在Rt△ADE中,利用30°所对的直角边等于斜边的一半求出AE的长即可;(2)根据题意得到设AD=CF=x,表示出BD与BF,在Rt△BDF中,利用30°所对的直角边等于斜边的一半得到BF=2BD,列出关于x的方程,求出方程的解得到x的值,确定出BD与BF的长,利用勾股定理求出DF的长,即可确定出△BDF的面积;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,由AD=CF,且△ABC为等边三角形,利用等边三角形的性质及锐角三角函数定义得到DE=FM,以及AE=CM,利用AAS得到△DEG与△FMC全等,利用全等三角形对应边相等得到EG=MG,根据AC=AE+EC,等量代换即可得证.【详解】解:(1)当D为AB中点时,AD=BD=AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=AD=;(2)设AD=x,∴CF=x,则BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根据勾股定理得:DF=4,∴S△BDF=×4×4=8;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,∵△ABC为等边三角形,∴∠A=∠ACB=∠FCM=60°,在Rt△ADE和Rt△FCM中,∴Rt△ADE≌Rt△FCM,∴DE=FM,AE=CM,在△DEG和△FMG,,∴△DEG≌△FMG,∴GE=GM,∴AC=AE+EC=CM+CE=GE+GM=2GE.【点睛】此题考查了全等三角形的判定与性质,等边三角形的性质,以及含30°直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.20、见解析【分析】根据AB∥CD,AD∥BC,可得四边形ABCD是平行四边形,所以∠B=∠ADC,再由三角形的外角性质可得∠ADC=∠DAE+∠E=2∠E.【详解】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠B=∠ADC,又∵∠DAE=∠E,∴∠ADC=∠DAE+∠E=2∠E.∴∠B=2∠E.【点睛】本题主要考查了平行四边形的判定以及三角形的外角性质,属于基础题,比较简单.21、(1)证明见解析;(2)△APQ是等边三角形.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【详解】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.22、(1)6;(2)【分析】(1)先根据二次根式的除法法则和零指数幂的意义计算,然后进行减法运算;(2)先把各二次根式化为最简二次根式,然后合并即可.【详解】解:(1)原式=﹣1=7﹣1=6;(2)原式=6=.【点睛】本题考查二次根式的除法法则、零指数幂的意义、二次根式的化简,解题的关键是掌握二次根式的除法法则、零指数幂的意义、二次根式的化简.23、(1)见解析,;(2)见解析,【分析】(1)分别作出点A,B,C关于轴的对应点A′,B′,C′,再顺次连接即可.

(2)作点A′关于x轴的对称点A″,连接BA″交x轴于P,点P即为所求.【详解】解:(1)如图所示,即为所求,点;(2)如图所示,点即为所求.【点睛】本题考查作图−轴对称变换,轴对称−最短问题等知识,熟知关于y轴对称的点的坐标特点是解答此题的关键.24、(1)25°;小;(2)见解析;(3)当∠BDA=110°或80°时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA的变化情况;(2)假设△ABD≌△DCE,利用全等三角形的对应边相等得出AB=DC=2,即可求得答案;

(3)假设△ADE是等腰三角形,分为三种情况:①当AD=AE时,∠ADE=∠AED=40°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=70°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.【详解】(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2)∵∠EDC+∠ADE=∠DAB+∠B,∠B=∠EDA=40°∴∠EDC=∠DAB∵AB=AC∴∠B=∠C在△ABD和△DCE中,∴△ABD≌△DCE(ASA)(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=×(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论