2025届贵州省思南县联考八年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2025届贵州省思南县联考八年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2025届贵州省思南县联考八年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2025届贵州省思南县联考八年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2025届贵州省思南县联考八年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省思南县联考八年级数学第一学期期末学业质量监测模拟试题测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在中,尺规作图如下:在射线、上,分别截取、,使;分别以点和点为圆心、大于的长为半径作弧,两弧相交于点;作射线,连结、.下列结论不一定成立的是()A. B. C. D.2.关于函数y=﹣3x+2,下列结论正确的是()A.图象经过点(﹣3,2) B.图象经过第一、三象限C.y的值随着x的值增大而减小 D.y的值随着x的值增大而增大3.如图是一个三级台阶,它的每一级的长、宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬()A.13cm B.40cm C.130cm D.169cm4.若点A(n,2)在y轴上,则点B(2n-1,3n+1)位于()A.第四象限. B.第三象限 C.第二象限 D.第一象限5.若点与点关于原点成中心对称,则的值是()A.1 B.3 C.5 D.76.将用科学记数法表示应为()A. B. C. D.7.在平面直角坐标系中,若点P(m+3,-2m)到两坐标轴的距离相等,则m的值为()A.-1 B.3 C.-1或3 D.-1或58.、在数轴上的位置如图所示,那么化简的结果是()A. B. C. D.9.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.10.多项式分解因式的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.若二次根式有意义,则x的取值范围是__.12.已知(x-2018)2=15,则(x-2017)2+(x-2019)2的值是_________13.如图,网格纸上每个小正方形的边长为1,点,点均在格点上,点为轴上任意一点,则=____________;周长的最小值为_______________.14.因式分解:__________.15.若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第_____________象限.16.若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为_______________.17.已知a2-2ab+b2=6,则a-b=_________.18.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为_____.三、解答题(共66分)19.(10分)先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.20.(6分)解分式方程和不等式组:(1)(2)解不等式组并写出不等式组的整数解.21.(6分)(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).22.(8分)已知:如图,∠AGD=∠ACB,∠1=∠2,CD与EF平行吗?为什么?23.(8分)先化简:÷(),再从﹣3<x<2的范围内选取一个你最喜欢的整数代入,求值.24.(8分)(1)分解因式:;(2)化简求值:,其中.25.(10分)解:26.(10分)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)mm-3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意可利用SSS判定△OEC≌△ODC,然后根据全等三角形的性质判断即可.【详解】解:根据题意,得:OE=OD,CE=CD,OC=OC,∴△OEC≌△ODC(SSS),∴,,∴B、C、D三项是正确的,而不一定成立.故选:A.【点睛】本题考查的是角平分线的尺规作图和全等三角形的判定和性质,属于基本题型,熟练掌握基本知识是关键.2、C【解析】根据一次函数的性质和一次函数图象的性质,依次分析各个选项,选出正确的选项即可.【详解】A.把x=﹣3代入y=﹣3x+2得:y=11,即A项错误,B.函数y=﹣3x+2的图象经过第一、二、四象限,即B项错误,C.y的值随着x的增大而减小,即C项正确,D.y的值随着x的增大而减小,即D项错误,故选C.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数的性质和一次函数图象是解题的关键.3、C【解析】将台阶展开,如图所示,因为BC=3×10+3×30=120,AC=50,由勾股定理得:cm,故正确选项是C.4、C【分析】由点在y轴的条件是横坐标为0,得出点A(n,2)的n=0,再代入求出点B的坐标及象限.【详解】∵点A(n,2)在y轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(2n﹣1,3n+1)在第二象限.故选:C.【点睛】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5、C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点与点关于原点对称,∴,,解得:,,则故选C.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:=.

故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、C【分析】根据到坐标轴的距离相等,分横坐标与纵坐标相等和互为相反数两种情况讨论解答.【详解】解:∵点P(m+3,-2m)到两坐标轴的距离相等∴m+3+(-2m)=0或m+3=-2m解得m=3或m=-1故选:C【点睛】本题考查了点的坐标,难点在于要分两种情况讨论,熟记各象限内点的坐标特征是解题的关键.8、B【分析】先根据数轴确定出a,b的正负,进而确定出的正负,再利用绝对值的性质和二次根式的性质化简即可.【详解】由数轴可知∴∴原式=故选:B.【点睛】本题主要结合数轴考查绝对值的性质及二次根式的性质,掌握绝对值的性质及二次根式的性质是解题的关键.9、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【点睛】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.10、A【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:;故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.二、填空题(每小题3分,共24分)11、x≥﹣1【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】∵二次根式有意义,∴:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.【点睛】本题考查的知识点为二次根式有意义的条件.二次根式的被开方数是非负数.12、1【分析】将变形为,将看作一个整体,利用完全平方公式展开后再代入已知条件即可.【详解】解:∵∴展开得:∵∴原式故答案为:1.【点睛】本题考查的知识点是整式的化简求值以及完全平方公式的应用,掌握完全平方公式的内容是解此题的关键.13、+【分析】根据勾股定理可计算出AC的长,再找出点A关于x轴对称点,利用两点之间线段最短得出△PAC周长最小值.【详解】解:如图,AC==,作点A关于x轴对称的点A1,再连接A1C,此时与x轴的交点即为点P,此时A1C的长即为AP+CP的最小值,A1C==,∴△PAC周长的最小值为:A1C+AC=+.故答案为:,+.【点睛】本题考查了作图-轴对称变换、最短路线问题,解决本题的关键是正确得出对应点位置.14、2x(x-6)2【分析】先提公因式2x,再利用完全平方公式分解即可.【详解】,故答案为:.【点睛】此题考查整式的因式分解,正确掌握因式分解的方法:先提公因式,再按照公式法分解,根据每个整式的特点选择恰当的因式分解的方法是解题的关键.15、二、四【解析】试题分析:形如y=kx(k是常数,k≠0)的函数叫做正比例函数;正比例函数y=kx(k是常数,k≠0),当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.根据正比例函数定义可得:|m|=1,且m﹣1≠0,计算出m的值,然后可得解析式,再根据正比例函数的性质可得答案.由题意得:|m|=1,且m﹣1≠0,解得:m=﹣1,函数解析式为y=﹣2x,∵k=﹣2<0,∴该函数的图象经过第二、四象限考点:正比例函数的定义和性质16、【分析】将k看做已知数求出x与y,代入2x十3y=

6中计算即可得到k的値.【详解】解:

①十②得:

2x=14k,即x=7k,

将x=

7k代入①得:7k十y=5k,即y=

-2k,

將x=7k,

y=

-2k代入2x十3y=6得:

14k-6k=6,

解得:

k=

故答案为:

【点睛】此题考查了二元一次方程组的解以及二元一-次方程的解,方程的解即为能使方程左右两边成立的未知数的值.17、【解析】由题意得(a-b)2="6,"则=18、1.【分析】设出正方形的边长,根据正方形的面积公式和已知阴影部分的面积构建一个方程组,可整体求出正方形A、B的面积之和为1.【详解】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:解得:x2+y2=1,∴SA+SB=x2+y2=1,故答案为1.【点睛】本题综合考查了完全平方公式的应用,正方形的面积公式,重点掌握完全平方公式的应用,难点是巧用变形求解两个正方形的面积和.三、解答题(共66分)19、化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x2-2x+1)-(4x2-9)=4x2-8x+4-4x2+9=-8x+13当x=-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.20、(1)x=-1;(2)1≤x<2,x=1.【分析】(1)根据解分式方程的一般步骤解方程即可;(2)根据不等式的基本性质分别解两个不等式,然后取公共解集,即可得出结论.【详解】(1)解:去分母,得化简得,2x=-2系数化为1得,x=-1经检验x=-1是原分式方程的解.(2)解:解不等式①,得x≥1.解不等式②,得x<2.∴不等式组的解集为1≤x<2.∴不等式组的整数解为x=1.【点睛】此题考查的是解分式方程和解一元一次不等式组,掌握解分式方程的一般步骤和不等式的基本性质是解决此题的关键.21、(1)①1°;②1°;(2)∠BFE=α.【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=1°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=1°.故答案为1.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=1°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=1°.故答案为1.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.22、平行,见解析.【分析】先判定GD//CB,然后根据平行的性质得到∠1=∠BCD,然后利用同位角相等、两直线平行即可证明.【详解】解:平行.理由如下:∵∠AGD=∠ACB,(已知)∴GD∥BC(同位角相等,两直线平行)∴∠1=∠BCD(两直线平行,内错角相等)∵∠1=∠2,(已知)∴∠2=∠BCD(等量代换)∴CD∥EF(同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,灵活运用同位角相等、两直线平行是解答本题的关键.23、;取x=-2原式=【分析】首先将括号里面通分,进而将能因式分解的分子与分母因式分解,即可化简,再利用分式有意的条件得出即可.【详解】解:原式====∵∴取x=-2∴原式=【点睛】此题主要考查了分式的化简求值,在分式运算的过程中,要注意对分式的分子、分母进行因式分解,然后简化运算,再运用四则运算法则进行求值计算.24、(1);(2),【分析】(1)先提公因式,再运用完全平方公式进行第二次分解即可;(2)通分并利用同分母分式的加法法则计算,化成最简式后再代入求值即可.【详解】(1);(2)当时,原式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论