




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章空间向量与立体几何章节验收测评卷(考试时间:150分钟试卷满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2324高二下·江苏南京·期末)在空间直角坐标系中,点关于轴的对称点坐标是(
)A. B. C. D.2.(2324高二上·陕西榆林·期中)如图所示的三棱锥ABCD中,令,,,且M,G分别是BC,CD的中点,则等于(
)A. B. C. D.3.(2324高二上·广东中山·期中)已知向量,若,则实数(
)A. B. C. D.4.(2324高二下·江苏淮安·期末)正方体中,为中点,则直线,所成角的余弦值为(
)A. B. C. D.5.(2324高二下·福建·期中)已知,则在上的投影向量为(
).A. B. C. D.6.(2324高二上·北京昌平·期末)如图,在长方体中,,,,分别是棱和上的两个动点,且,则的中点到的距离为(
)A. B. C. D.7.(2324高二下·江苏徐州·期中)如图,四边形,现将沿折起,当二面角的大小在时,直线和所成角为,则的最大值为(
)A. B. C. D.8.(2324高二下·江苏盐城·期中)如图,在棱长均为2的正四棱锥中,为棱的中点,则下列判断正确的是(
)A.平面,且到平面的距离为B.与平面不平行,且与平面所成角大于30°C.与平面不平行,且与平面所成角小于30°D.与平面不平行,且与平面所成角等于30°二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(2324高二下·江苏常州·期中)下列给出的命题正确的是(
)A.若为空间的一组基底,则也是空间的一组基底B.点为平面上的一点,且,则C.若直线的方向向量为,平面的法向量,则D.两个不重合的平面的法向量分别是,则10.(2024·全国·模拟预测)已知直线是正方体体对角线所在直线,为其对应棱的中点,则下列正方体的图形中满足平面的是(
)A.
B.
C.
D.11.(2324高二下·河南南阳·阶段练习)如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点,则下列说法正确的是(
)
A.B.平面C.与平面所成夹角的正弦值为D.平面与平面所成夹角的正弦值为三、填空题:本题共3小题,每小题5分,共15分.12.(2324高二下·江苏常州·期中)已知正四面体的棱长为1,点是的中点,则的值为.13.(2324高二下·江苏徐州·期中)定义.若向量,向量为单位向量,则的取值范围是.14.(2324高二下·江苏·阶段练习)已知正方体的棱长为2,M,N,G分别是棱,BC,的中点,Q是该正方体表面上的一点,且.若,则直线NQ与平面所成角的大小为,若x,,则的最大值为.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.(2324高二下·河南焦作·期末)如图,在三棱柱中,,,两两垂直,,,,D为的中点,以点A为原点,,,所在直线分别为x轴、y轴、z轴建立空间直角坐标系.
(1)求证:;(2)求直线与平面所成角的正弦值.16.(2024·天津南开·二模)在四棱锥中,底面ABCD是边长为2的正方形,,,O为CD的中点,二面角ACDP为直二面角.(1)求证:;(2)求直线PC与平面PAB所成角的正弦值;(3)求平面POB与平面PAB夹角的余弦值.17.(2425高二下·全国·期末)在直三棱柱中,,分别为棱中点.(1)证明:平面;(2)若,且,则当为何值时,有?18.(2024·浙江·三模)如图,在三棱柱中,底面是边长为2的正三角形,平面底面,,,E,F分别是,的中点,P是线段上的动点.(1)当P是线段的中点时,求点P到平面的距离;(2)当平面与平面的夹角的余弦值为时,求.19
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校电取暖管理制度
- 学校舍安全管理制度
- 学生上安全管理制度
- 安保市卫生管理制度
- 安全警示牌管理制度
- 安设部各项管理制度
- 定量包装称管理制度
- 实训室药品管理制度
- 审稿及校对管理制度
- 客货邮运输管理制度
- TSG 51-2023 起重机械安全技术规程 含2024年第1号修改单
- 国家开放大学《数据库应用技术》期末考试题库
- 项目部组织安排
- 物资运输安全管理制度模版(3篇)
- 【MOOC】最优化理论与方法-南京大学 中国大学慕课MOOC答案
- 教育心理学实践探究
- 警用执法记录仪培训
- 财务岗位招聘笔试题及解答(某大型国企)2025年
- TCOSHA 021-2023 井盐矿山开采安全操作规程
- 白酒寄售合同协议书范文模板
- 2024年河北省中考语文试题(含答案解析)
评论
0/150
提交评论