下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE4互斥事务的概率[A级基础巩固]1.若某群体中的成员只用现金支付的概率为0.15,既用现金支付也用非现金支付的概率为0.35,则仅用非现金支付的概率为()A.0.2 B.0.4C.0.5 D.0.8解析:选C某群体中的成员只用现金支付的概率为0.15,既用现金支付也用非现金支付的概率为0.35,所以不用现金支付的概率为P=1-0.15-0.35=0.5.故选C.2.(多选)黄种人群中各种血型的人所占的比例见下表:血型ABABO该血型的人所占比例0.280.290.080.35已知同种血型的人可以输血,O型血可以给任何一种血型的人输血,任何血型的人都可以给AB血型的人输血,其他不同血型的人不能相互输血,下列结论正确的是()A.任找一个人,其血可以输给B型血的人的概率是0.64B.任找一个人,B型血的人能为其输血的概率是0.29C.任找一个人,其血可以输给O型血的人的概率为1D.任找一个人,其血可以输给AB型血的人的概率为1解析:选AD任找一个人,其血型为A、B、AB、O型血的事务分别记为A′,B′,C′,D′,它们两两互斥.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,所以“可以输给B型血的人”为事务B′∪D′,依据概率的加法公式,得P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64,故A正确;B型血的人能为B型、AB型的人输血,其概率为0.29+0.08=0.37,B错误;由O型血只能接受O型血的人输血知,C错误;由任何人的血都可以输给AB型血的人,知D正确.故选A、D.3.某射手的一次射击中,射中10环,9环,8环的概率分别为0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为()A.0.40 B.0.30C.0.60 D.0.90解析:选A不够8环的概率为1-0.20-0.30-0.10=0.40.4.掷一枚骰子的试验中,出现各点的概率为eq\f(1,6).事务A表示“小于5的偶数点出现”,事务B表示“小于5的点数出现”,则一次试验中,事务A+eq\o(B,\s\up6(-))(eq\o(B,\s\up6(-))表示事务B的对立事务)发生的概率为()A.eq\f(1,3) B.eq\f(1,2)C.eq\f(2,3) D.eq\f(5,6)解析:选C由题意知,eq\o(B,\s\up6(-))表示“大于或等于5的点数出现”,事务A与事务eq\o(B,\s\up6(-))互斥,可得P(A+eq\o(B,\s\up6(-)))=P(A)+P(eq\o(B,\s\up6(-)))=eq\f(2,6)+eq\f(2,6)=eq\f(2,3).5.(多选)下列四种说法,其中错误的是()A.对立事务肯定是互斥事务B.若A,B为两个事务,则P(A+B)=P(A)+P(B)C.若事务A,B,C彼此互斥,则P(A)+P(B)+P(C)=1D.若事务A,B满意P(A)+P(B)=1,则A,B是对立事务解析:选BCD对立事务肯定是互斥事务,故A对;只有A,B为互斥事务时才有P(A+B)=P(A)+P(B),故B错;因A,B,C并不肯定包括随机试验中的全部样本点,故P(A)+P(B)+P(C)并不肯定等于1,故C错;若A,B不互斥,尽管P(A)+P(B)=1,但A,B不是对立事务,故D错.6.围棋盒子中有多粒黑子和白子,已知取出2粒都是黑子的概率为eq\f(1,7),取出2粒都是白子的概率是eq\f(12,35),则随意取出2粒恰好是同一色的概率是________.解析:设“取出2粒都是黑子”为事务A,“取出2粒都是白子”为事务B,“随意取出2粒恰好是同一色”为事务C,则事务C即事务A+B,且事务A与事务B互斥,所以P(C)=P(A)+P(B)=eq\f(1,7)+eq\f(12,35)=eq\f(17,35),即随意取出2粒恰好是同一色的概率为eq\f(17,35).答案:eq\f(17,35)7.一个口袋内有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出不是红球的概率为________.解析:设A={摸出红球},B={摸出白球},C={摸出黑球},则A,B,C两两互斥,A与eq\x\to(A)为对立事务,因为P(A+B)=P(A)+P(B)=0.58,P(A+C)=P(A)+P(C)=0.62,P(A+B+C)=P(A)+P(B)+P(C)=1,所以P(C)=0.42,P(B)=0.38,P(A)=0.20,所以P(eq\x\to(A))=1-P(A)=1-0.20=0.80.答案:0.808.已知6名同学中恰有两名女同学,从这6名同学中任选两人参与某项活动,则在选出的同学中至少包括一名女同学的概率是________.解析:从6名同学中任选两人,用列举法易知共有15个样本点.假如从中选2人,全是男生,共有6个样本点.故全是男生的概率是eq\f(6,15)=eq\f(2,5).从而至少有1名女生的概率是1-eq\f(2,5)=eq\f(3,5).答案:eq\f(3,5)9.在某一时期内,一条河流某处的年最高水位(单位:m)在各个范围内的概率如下表:年最高水位/m[8,10)[10,12)[12,14)[14,16)[16,18]概率0.100.280.380.160.08计算在同一时期内,河流此处的年最高水位在下列范围内的概率:(1)[10,16)m;(2)[8,12)m;(3)[14,18]m.解:记此河流某处的年最高水位在[8,10),[10,12),[12,14),[14,16),[16,18]m分别为事务A,B,C,D,E,则A,B,C,D,E两两互斥.(1)P(B+C+D)=P(B)+P(C)+P(D)=0.28+0.38+0.16=0.82.(2)P(A+B)=P(A)+P(B)=0.10+0.28=0.38.(3)P(D+E)=P(D)+P(E)=0.16+0.08=0.24.10.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响其次声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?解:记“响第一声时被接”为事务A,“响其次声时被接”为事务B,“响第三声时被接”为事务C,“响第四声时被接”为事务D.“响前四声内被接”为事务E,则易知A,B,C,D互斥,且E=A∪B∪C∪D,所以由互斥事务的概率的加法公式得,P(E)=P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.1+0.3+0.4+0.1=0.9.即电话在响前四声内被接的概率是0.9.[B级综合运用]11.某城市2024年的空气质量状况如下表所示:污染指数T3060100110130140概率Peq\f(1,10)eq\f(1,6)eq\f(1,3)eq\f(7,30)eq\f(2,15)eq\f(1,30)其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良,100<T≤150时,空气质量为稍微污染.该城市2024年空气质量达到良或优的概率为()A.eq\f(3,5) B.eq\f(1,180)C.eq\f(1,19) D.eq\f(5,9)解析:选A所求概率为eq\f(1,10)+eq\f(1,6)+eq\f(1,3)=eq\f(3,5).故选A.12.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事务分别为A,B,C,求:(1)P(A),P(B),P(C);(2)抽取1张奖券中奖概率;(3)抽取1张奖券不中特等奖或一等奖的概率.解:(1)∵每1000张奖券中设特等奖1个,一等奖10个,二等奖50个,∴P(A)=eq\f(1,1000),P(B)=eq\f(10,1000)=eq\f(1,100),P(C)=eq\f(50,1000)=eq\f(1,20).(2)设“抽取1张奖券中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 廉政合同维护采购公平的基石
- 房产回购协议书格式
- 成建制劳务分包合作文本
- 中水利用招标文件解析
- 2024建材供货合同范本2
- 化学性污染对食品安全的影响考核试卷
- 森林改培的生态休闲与运动旅游考核试卷
- 熟人卖房合同模板
- 双向门面招租合同模板
- 汽车装修合同范例
- 肺结节诊治中国专家共识(2024年版)解读
- 2024年山东省中考数学试卷试题解读及答案解析
- 2024年秋新苏教版三年级上册科学全册复习资料
- 初中语文修改病句市公开课一等奖省赛课获奖课件
- 四年级上册数学教学设计-第五单元第一课时《去图书馆》 北师大版
- 新民主主义论
- 2024美团商家入驻合作协议
- 人教版八年级地理常考的71道简答题
- 2024年社区工作者考试必背1000题题库附完整答案(全优)
- 2024-2030年中国口腔CBCT行业竞争格局分析及市场需求前景报告
- 玻璃体积血护理查房
评论
0/150
提交评论