辽宁省沈阳市2025年高三期末试题含解析_第1页
辽宁省沈阳市2025年高三期末试题含解析_第2页
辽宁省沈阳市2025年高三期末试题含解析_第3页
辽宁省沈阳市2025年高三期末试题含解析_第4页
辽宁省沈阳市2025年高三期末试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省沈阳市2025年高三期末试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为()A. B. C. D.2.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.3.下列与函数定义域和单调性都相同的函数是()A. B. C. D.4.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.5.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.66.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.7.已知满足,则的取值范围为()A. B. C. D.8.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i9.已知函数,且),则“在上是单调函数”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件10.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为()A. B. C. D.11.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.12.“完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的各项均为正数,满足,.,若是等比数列,数列的通项公式_______.14.正项等比数列|满足,且成等差数列,则取得最小值时的值为_____15.已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是__________.16.已知(为虚数单位),则复数________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.(1)求数列的通项公式;(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.18.(12分)已知的内角、、的对边分别为、、,满足.有三个条件:①;②;③.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分别是棱AB,PC的中点.求证:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.20.(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.21.(12分)网络看病就是国内或者国外的单个人、多个人或者单位通过国际互联网或者其他局域网对自我、他人或者某种生物的生理疾病或者机器故障进行查找询问、诊断治疗、检查修复的一种新兴的看病方式.因此,实地看病与网络看病便成为现在人们的两种看病方式,最近某信息机构调研了患者对网络看病,实地看病的满意程度,在每种看病方式的患者中各随机抽取15名,将他们分成两组,每组15人,分别对网络看病,实地看病两种方式进行满意度测评,根据患者的评分(满分100分)绘制了如图所示的茎叶图:(1)根据茎叶图判断患者对于网络看病、实地看病那种方式的满意度更高?并说明理由;(2)若将大于等于80分视为“满意”,根据茎叶图填写下面的列联表:满意不满意总计网络看病实地看病总计并根据列联表判断能否有的把握认为患者看病满意度与看病方式有关?(3)从网络看病的评价“满意”的人中随机抽取2人,求这2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

由圆过原点,知中有一点与原点重合,作出图形,由,,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积.【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,,∴,∴,,∴点坐标为,代入抛物线方程得,,∴,.故选:B.本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解.2.D【解析】

依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.3.C【解析】

分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符合.D选项,的定义域为,不符合.故选:C本小题主要考查函数的定义域和单调性,属于基础题.4.D【解析】

结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.5.B【解析】

根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.6.B【解析】

首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.7.C【解析】

设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.8.B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.9.C【解析】

先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且)令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.10.D【解析】

可设的内切圆的圆心为,设,,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值.【详解】可设的内切圆的圆心为,为切点,且为中点,,设,,则,且有,解得,,设,,设圆切于点,则,,由,解得,,,所以为等边三角形,所以,,解得.因此,该椭圆的离心率为.故选:D.本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题.11.A【解析】

,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.12.C【解析】

先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,∴6和28不在同一组的概率.故选:C.本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用递推关系,等比数列的通项公式即可求得结果.【详解】因为,所以,因为是等比数列,所以数列的公比为1.又,所以当时,有.这说明在已知条件下,可以得到唯一的等比数列,所以,故答案为:.该题考查的是有关数列的问题,涉及到的知识点有根据递推公式求数列的通项公式,属于简单题目.14.2【解析】

先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【详解】解:设公比为,且,时,上式有最小值,故答案为:2.本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.15.【解析】

根据抛物线,不妨设,取,通过求导得,,再根据以线段为直径的圆恰好经过,则,得到,两式联立,求得点N的轨迹,再求解最值.【详解】因为抛物线,不妨设,取,所以,即,所以,因为以线段为直径的圆恰好经过,所以,所以,所以,由,解得,所以点在直线上,所以当时,最小,最小值为.故答案为:2本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.16.【解析】

解:故答案为:本题考查复数代数形式的乘除运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)4【解析】

(1)利用判断是等差数列,利用求出,利用等比中项建立方程,求出公差可得.(2)利用的通项公式,求出,用错位相减法求出,最后建立不等式求出最小的正整数.【详解】解:任意都有,数列是等差数列,,又是与的等比中项,,设数列的公差为,且,则,解得,,;由题意可知,①,②,①﹣②得:,,,由得,,,,满足条件的最小的正整数的值为.本题考查等差数列的通项公式和前项和公式及错位相减法求和.(1)解决等差数列通项的思路(1)在等差数列中,是最基本的两个量,一般可设出和,利用等差数列的通项公式和前项和公式列方程(组)求解即可.(2)错位相减法求和的方法:如果数列是等差数列,是等比数列,求数列的前项和时,可采用错位相减法,一般是和式两边同乘以等比数列的公比,然后作差求解;在写“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式18.(1);(2).【解析】

(1)先求出角,进而可得出,则①②中有且只有一个正确,③正确,然后分①③正确和②③正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值;(2)计算出和,计算出,可得出,进而可求得的面积.【详解】(1)因为,所以,得,,,为钝角,与矛盾,故①②中仅有一个正确,③正确.显然,得.当①③正确时,由,得(无解);当②③正确时,由于,,得;(2)如图,因为,,则,则,.本题考查解三角形综合应用,涉及三角形面积公式和余弦定理的应用,考查计算能力,属于中等题.19.(1)见解析;(2)见解析【解析】

(1)取的中点构造平行四边形,得到,从而证出平面;(2)先证平面,再利用面面垂直的判定定理得到平面平面.【详解】证明:(1)如图,取的中点,连接,,是棱的中点,底面是矩形,,且,又,分别是棱,的中点,,且,,且,四边形为平行四边形,,又平面,平面,平面;(2),点是棱的中点,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题.20.(1);(2)【解析】

(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1)①,当时,,,当时,②,①②得:,,适合,故;(2),.本题考查法求数列的通项公式,考查裂项求和,是基础题.21.(1)实地看病的满意度更高,理由见解析;(2)列联表见解析,有;(3).【解析】

(1)对实地看病满意度更高,可以从茎叶图四个方面选一个回答即可;(2)先完成列联表,再由独立性检验得有的把握认为患者看病满意度与看病方式有关;(3)利用古典概型的概率公式求得这2人平分都低于90分的概率.【详解】(1)对实地看病满意度更高,理由如下:(i)由茎叶图可知:在网络看病中,有的患者满意度评分低于80分;在实地看病中,有的患者评分高于80分,因此患者对实地看病满意度更高.(ii)由茎叶图可知:网络看病满意度评分的中位数为73分,实地看病评分的中位数为87分,因此患者对实地看病满意度更高.(iii)由茎叶图可知:网络看病的满意度评分平均分低于80分;实地看病的满意度的评分平均分高于80分,因此患者对实地看病满意度更高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论