版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡锡东片重点达标名校2025届初三阶段性测试(二模)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.在3,0,-2,-2四个数中,最小的数是()A.3 B.0 C.-2 D.-22.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A.4π+3 B.4π+ C.π+ D.π+33.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.54.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是()A.3 B.6 C.9 D.365.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和6.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C. D.7.据调查,某班20为女同学所穿鞋子的尺码如表所示,尺码(码)3435363738人数251021则鞋子尺码的众数和中位数分别是()A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码8.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.99.实数4的倒数是()A.4 B. C.﹣4 D.﹣10.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是_____.12.关于x的不等式组有2个整数解,则a的取值范围是____________.13.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则______.14.写出一个一次函数,使它的图象经过第一、三、四象限:______.15.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为________.16.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.三、解答题(共8题,共72分)17.(8分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.18.(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)19.(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.20.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.21.(8分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.22.(10分)解方程:x2-4x-5=023.(12分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.24.下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h超时费/(元)总费用/(元)方式A3040方式B50100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以-2<-2所以最小的数是-2,故选C.此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.2、A【解析】
连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.【详解】如下图,连AC,OC,BC,设CD交AB于H,∵CD垂直平分线段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直径,∴,∴,∵,∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,∵MA=MH,∴∴,∵,∴CF扫过的面积为,故选:A.本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.3、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B4、C【解析】
设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.【详解】设抛物线解析式为y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴抛物线的顶点坐标为(m-3,1),∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,即n=1.故选C.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.5、B【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B.圆既是中心对称图形也是轴对称图形,正确;C.平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.6、C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.故选C.考点:动点问题的函数图象.7、D【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.8、B【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x,9,5的平均数是2x,∴,解得:,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B.此题主要考查了中位数以及平均数,正确得出x的值是解题关键.9、B【解析】
根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=.故选:B.此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.10、D【解析】
找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
左视图有二列,从左往右分别有2,1个正方形;
俯视图有三列,从上往下分别有3,1个正方形,
故选A.本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】
根据平方根的定义进行计算即可.【详解】.解:∵i2=﹣1,∴(1+i)•(1﹣i)=1﹣i2=2,∴(1+i)•(1﹣i)的平方根是±,故答案为±.本题考查平方根以及实数的运算,解题关键掌握平方根的定义.12、8⩽a<13;【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽<5,解得:8⩽a<13,故答案为:8⩽a<13此题考查一元一次不等式组的整数解,掌握运算法则是解题关键13、1.【解析】
根据两点间的距离公式可求m的值.【详解】依题意有,解得,故答案为:1.考查了坐标确定位置,正确理解实际距离的定义是解题关键.14、y=x﹣1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).15、-1或1【解析】
利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】解:当y=1时,x2-2x-2=1,
解得:x1=-1,x2=3,
∵当a≤x≤a+2时,函数有最大值1,
∴a=-1或a+2=3,即a=1.
故答案为-1或1.本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.16、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.三、解答题(共8题,共72分)17、解:(1)图见解析;(2)证明见解析.【解析】
(1)根据角平分线的作法作出∠ABC的平分线即可.(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.【详解】解:(1)如图所示:(2)证明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四边形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四边形ABFE为菱形.18、塔杆CH的高为42米【解析】
作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.【详解】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=4,设AH=x,则BE=GH=GA+AH=23+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.19、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解析】
(1)∵点A的坐标为(−2,1),∴2+1=4,点R(0,4),S(2,2),T(2,−2)中,0+4=4,2+2=4,2+2=5,∴点A的同族点的是R,S;故答案为R,S;②∵点B在x轴上,∴点B的纵坐标为0,设B(x,0),则|x|=4,∴x=±4,∴B(−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线与x轴交于C(2,0),与y轴交于D(0,).点M在线段CD上,设其坐标为(x,y),则有:,,且.点M到x轴的距离为,点M到y轴的距离为,则.∴点M的同族点N满足横纵坐标的绝对值之和为2.即点N在右图中所示的正方形CDEF上.∵点E的坐标为(,0),点N在直线上,∴.②如图,设P(m,0)为圆心,为半径的圆与直线y=x−2相切,∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤也满足条件,∴满足条件的m的范围:m≤或m≥120、(1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3)M'(-2x,-2y)【解析】
解:(1)(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2)C(2,1),则C‘(-4,-2)(3)因为点M(x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)21、(1)证明见解析;(2)AE=23BF,(3)AE=m【解析】
(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=mn【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如图2中,结论:AE=23理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)结论:AE=mn理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.22、x1="-1,"x2=5【解析】根据十字相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市轨道交通建设委托管理合同
- 2024工装装修合同范文
- 2024个人房屋装修合同范本
- 2024年度安徽省某项环保设施建筑工程施工合同
- 母婴类课件教学课件
- 2024年员工保密责任协议书
- 2024年度计算机软硬件采购合同
- 2024年度应急物流服务协议
- 2024年店铺租赁协议(含装修)
- 2024年度企业咨询服务合同(战略规划)
- 只争朝夕不负韶华岗位竞聘述职报告
- 农场工作制度与农民岗位职责
- 2024年山东公务员考试行测真题及解析【完美打印版】
- 田赛裁判法与规则2
- 社区心肺复苏术普及
- 冬枣植保知识培训课件
- 校园突发事件与应急管理课件
- 计算机网络技术职业生涯规划
- DR拼接技术及常规摄片注意事项
- 《股票入门》课件
- 《不为人知的间歇泉》课件
评论
0/150
提交评论