江苏省苏州市区~重点中学2025年初三1月第一次诊断数学试题理试卷含解析_第1页
江苏省苏州市区~重点中学2025年初三1月第一次诊断数学试题理试卷含解析_第2页
江苏省苏州市区~重点中学2025年初三1月第一次诊断数学试题理试卷含解析_第3页
江苏省苏州市区~重点中学2025年初三1月第一次诊断数学试题理试卷含解析_第4页
江苏省苏州市区~重点中学2025年初三1月第一次诊断数学试题理试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市区~重点中学2025年初三1月第一次诊断数学试题理试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是()A.M>N B.M=N C.M<N D.不能确定2.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)3.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx+b>的解集为()A. B. C. D.4.已知,则的值是A.60 B.64 C.66 D.725.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人6.二元一次方程组的解是()A. B. C. D.7.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(,) B.(2,) C.(,) D.(,3﹣)8.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.309.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是()A. B. C. D.10.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.11.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣312.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是()A.50B.0.02C.0.1D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.14.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.15.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.16.已知a,b为两个连续的整数,且a<<b,则ba=_____.17.分解因式:2a2﹣2=_____.18.________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.20.(6分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=,求DG的长,21.(6分)计算22.(8分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?23.(8分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.24.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在地时距地面的高度为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?25.(10分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______;画出绕点B逆时针旋转的图形;在中,点C所形成的路径的长度为______.26.(12分)化简求值:,其中x是不等式组的整数解.27.(12分)(1)解方程:=0;(2)解不等式组,并把所得解集表示在数轴上.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】

若比较M,N的大小关系,只需计算M-N的值即可.【详解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故选A.本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.2、C【解析】

直接利用平方差公式分解因式即可.【详解】(x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).故选C.此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.3、B【解析】

根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b>的解集为:-6<x<0或x>2,

故选B.此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.4、A【解析】

将代入原式,计算可得.【详解】解:当时,原式,故选A.本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.5、A【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示16000,应记作1.6×104,故选A.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【解析】

利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选:B.此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.7、A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.8、D【解析】

试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.9、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.10、B【解析】

由题意可知,当时,;当时,;当时,.∵时,;时,.∴结合函数解析式,可知选项B正确.考点:1.动点问题的函数图象;2.三角形的面积.11、A【解析】分析:详解:∵当a≤x≤a+2时,函数有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.12、D【解析】所有小组频数之和等于数据总数,所有频率相加等于1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(20,4)(10086,0)【解析】

首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【详解】解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).故答案为(20,4)、(10086,0).本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.14、5200【解析】设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:解得所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息.15、1:4【解析】

由S△BDE:S△CDE=1:3,得到

,于是得到

.【详解】解:两个三角形同高,底边之比等于面积比.故答案为本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.16、1【解析】

根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.【详解】解:∵a,b为两个连续的整数,且a<<b,∴a=2,b=3,∴ba=32=1.故答案为1.此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,17、2(a+1)(a﹣1).【解析】

先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18、1【解析】

先将二次根式化为最简,然后再进行二次根式的乘法运算即可.【详解】解:原式=2×=1.故答案为1.本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析(2)见解析【解析】

(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;

(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,

∴AF=FG=GC.

又∵点D是边AB的中点,

∴DH∥BG.

同理:EH∥BF.

∴四边形FBGH是平行四边形,

连结BH,交AC于点O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四边形FBGH是菱形;

(2)∵四边形FBGH是平行四边形,

∴BO=HO,FO=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四边形ABCH是平行四边形.

∵AC⊥BH,AB=BC,

∴四边形ABCH是正方形.本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.20、(1)证明见解析;(2)AD=;(3)DG=.【解析】

(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;

(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;

(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB•AF=xy,则AD=;(3)连接EF,在Rt△BOD中,sinB=,设圆的半径为r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴,即DG=AD,∴AD=,则DG=.圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.21、【解析】

先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】原式=,=,=,=.本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40);(3)二人互相看不见的时间有7.1分钟.【解析】分析:(1)根据速度=路程÷时间可求出小芳上山的速度;根据速度=路程÷时间+小芳的速度可求出爸爸上山的速度;

(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;

(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论.详解:(1)小芳上山的速度为120÷6=20(m/min),爸爸上山的速度为120÷(21﹣6)+20=28(m/min).答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min.(2)∵(28﹣20)×(24+6﹣21)=72(m),∴点C的坐标为(30,72);∵二人返回山下的时间相差4min,44﹣4=40(min),∴点D的坐标为(40,192).设爸爸下山时CD段的函数解析式为y=kx+b,将C(30,72)、D(40,192)代入y=kx+b,,解得:.答:爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40).(3)设DE段的函数解析式为y=mx+n,将D(40,192)、E(44,0)代入y=mx+n,,解得:,∴DE段的函数解析式为y=﹣48x+2112(40≤x≤44).当y=12x﹣288>120时,34<x≤40;当y=﹣48x+2112>120时,40≤x<41.1.41.1﹣34=7.1(min).答:二人互相看不见的时间有7.1分钟.点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围.23、【小题1】见解析【小题2】见解析【小题3】【解析】证明:(1)连接OF∴FH切·O于点F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=24、(1)10;1;(2);(3)4分钟、9分钟或3分钟.【解析】

(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(10-100)÷20=10(米/分钟),b=3÷1×2=1.故答案为:10;1.(2)当0≤x≤2时,y=3x;当x≥2时,y=1+10×3(x-2)=1x-1.当y=1x-1=10时,x=2.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3.答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.25、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论