版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.3.1角一、单选题1、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为(
)A、35°
B、45°
C、55°
D、65°2、如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是(
)A、90°<α<180°
B、0°<α<90°
C、α=90°
D、α随折痕GF位置的变化而变化3、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于(
)A、30°
B、36°
C、45°
D、72°4、下列说法中正确的是(
)A、两点之间线段最短
B、若两个角的顶点重合,那么这两个角是对顶角
C、一条射线把一个角分成两个角,那么这条射线是角的平分线
D、过直线外一点有两条直线平行于已知直线5、两条平行线被第三条直线所截,则下列说法错误的是(
)A、一对邻补角的平分线互相垂直
B、一对同位角的平分线互相平行
C、一对内错角的平分线互相平行
D、一对同旁内角的平分线互相平行6、如图,AB∥CD,CE⊥BD,则图中与∠1互余的角有(
)A、1个
B、2个
C、3个
D、4个7、如图,已知AB∥CD,直线EF分别交AB,CD于点E、F,EG平分∠AEF,若∠2=40°,则∠1的度数是(
)A、70°
B、65°
C、60°
D、50°8、如图,已知l1∥l2,AC、BC、AD为三条角平分线,则图中与∠1互为余角的角有(
)A、1个
B、2个
C、3个
D、4个9、如图所示,用量角器度量几个角的度数,下列结论中正确的是(
)
A、∠BOC=60°
B、∠COA是∠EOD的余角
C、∠AOC=∠BOD
D、∠AOD与∠COE互补二、填空题10、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________.11、如图,AB、CD相交于O,OE⊥AB,若∠EOD=65°,则∠AOC=________.12、如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE=________度.13、如图,已知直线AE∥BC,AD平分∠BAE,
交BC于点C,∠BCD=140°,则∠B的度数为________
三、解答题14、已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.15、如图,AB∥CD,点G、E、F分别在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度数.16、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.17、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?
四、综合题18、如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.19、综合题(1)已知n正整数,且,求的值;(2)如图,AB、CD交于点O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度数.
20、仅用无刻度的直尺作出符合下列要求的图形.
(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上).试过点O作射线OM、ON,使得OM⊥ON.
答案解析部分一、单选题1、【答案】A
【考点】角平分线的定义,对顶角、邻补角,垂线
【解析】【解答】解:∵ON⊥OM,∴∠NOM=90°,
∵∠CON=55°,
∴∠COM=90°﹣55°=35°,
∵射线OM平分∠AOC,
∴∠AOM=∠COM=35°,
故选A.
【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.2、【答案】C
【考点】角的计算
【解析】【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH
∴∠GFH=∠EFG+∠EFH=∠EFC+∠EFB=(∠EFC+∠EFB)=×180°=90°.
故选C.
【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE即可求解.3、【答案】A
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×=60°,
∵OA平分∠EOC,
∴∠AOC=∠EOC=×60°=30°,
∴∠BOD=∠AOC=30°.
故选:A.
【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.4、【答案】A
【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论
【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;
C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;
D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.
故选A.
【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.5、【答案】D
【考点】角平分线的定义,平行线的性质
【解析】【解答】解:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;
C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;
D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;
故选:D.
【分析】由两条平行线被第三条直线所截,内错角的平分线互相平行、同旁内角的平分线互相垂直、内错角的平分线互相平行、同位角的平分线互相平行,即可求得答案.6、【答案】C
【考点】余角和补角,垂线,平行线的性质
【解析】【解答】解:∵CE⊥BD,∴∠CBD=∠EBD=90°,
∴∠ABC+∠1=90°,∠1+∠EBF=90°,
即∠ABC、∠EBF与∠1互余;
∵AB∥CD,
∴∠1=∠D,
∵∠C+∠D=90°,
∴∠C+∠1=90°,
即∠C与∠1互余;
图中与∠1互余的角有3个,
故选:C.
【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余.7、【答案】A
【考点】角平分线的定义,平行线的性质
【解析】【解答】解:∵直线AB∥CD,∠2=40°,∴∠AEG=∠1,∠AEF=140°,
∵EG平分∠AEF交CD于点G,
∴∠AEG=∠GEF=70°,
∴∠1=70°.
故选:A.
【分析】利用平行线的性质得出∠AEG=∠1,∠AEF=140°,再利用角平分线的性质得出∠AEG=∠GEF=70°,即可得出答案.8、【答案】D
【考点】角平分线的定义,平行线的性质
【解析】【解答】解:∵l1∥l2,且AC、BC、AD为三条角平分线,∴∠1+∠2=×180°=90°,
∴∠1与∠2互余,
又∵∠2=∠3,
∴∠1与∠3互余,
∵∠CAD=∠1+∠4=×180°=90°,
∴∠1与∠4互余,
又∵∠4=∠5,
∴∠1与∠5互余,
故与∠1互余的角共有4个.
故选:D.
【分析】根据平行线的性质,以及角平分线的定义,可得∠1与∠2互余,∠1与∠3互余,∠1与∠4互余,∠1与∠5互余.9、【答案】D
【考点】角的计算,余角和补角
【解析】【解答】解:A.∠BOC=120°,故A错误;
B.∠COA=60°,∠EOD=60,它们的大小相等,故B错误;
C.∠AOC=60∘,∠BOD=30∘,它们的大小不相等,故C错误;
D.∠AOD=150°,∠COE=30°,它们互补,故D正确。
故选:D.
【分析】二、填空题10、【答案】50°
【考点】余角和补角,平行线的性质
【解析】【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,
∵a∥b,
∴∠2=∠3=50°.
故答案为:50°.
【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.11、【答案】25
【考点】余角和补角,对顶角、邻补角
【解析】【解答】解:∵OE⊥AB,∴∠BOE=90°,
∴∠BOD=90°﹣∠EOD=90°﹣65°=25°,
∴∠AOC=∠BOD=25°.
故答案为:25.
【分析】根据垂直的定义可得∠BOE=90°,然后求出∠BOD,再根据对顶角相等可得∠AOC=∠BOD.12、【答案】56
【考点】角平分线的定义,平行线的性质,三角形的外角性质
【解析】【解答】解:∵FE∥ON,∠FEO=28°,∴∠NOE=∠FEO=28°,
∵OE平分∠MON,
∴∠NOE=∠EOF=28°,
∵∠MFE是△EOF的外角,
∴∠MFE=∠NOE+∠EOF=28°+28°=56°.
故答案为:56.
【分析】先根据平行线的性质得出∠NOE=∠FEO,再根据角平分线的性质得出∠NOE=∠EOF,由三角形外角的性质即可得出结论.13、【答案】100°
【考点】角平分线的定义,平行线的性质,三角形内角和定理
【解析】【解答】解:∵∠BCD=140°,∴∠ACB=180°-140°=40°.
∵AE∥BC,∴∠CAE=∠ACB=40°.
∵AD平分∠BAE,∴∠BAC=∠CAE=40°.
∴∠B=180°-40°-40°=100°.
【分析】三、解答题14、【答案】解:∵OA⊥OC,∴∠AOC=90°,
∵∠AOB:∠AOC=2:3,
∴∠AOB=60°.
因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.
①当在∠AOC内时,∠BOC=90°﹣60°=30°;
②当在∠AOC外时,∠BOC=90°+60°=150°.
综上所述,∠BOC的度数为30°或150°.
【考点】角的计算,垂线
【解析】【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.15、【答案】解:∵AB∥CD,∴∠EFD=∠1=40°.
∴∠EFC=180°﹣∠EFD=180°﹣40°=140°.
∵FG平分∠EFC,
∴∠CFG=∠EFC=70°.
∴∠FGE=∠CFG=70°.
【考点】角平分线的定义,对顶角、邻补角,平行线的性质
【解析】【分析】运用角平分线的定义、平行线的性质和邻补角的定义进行解答即可.16、【答案】解:由角的和差,得∠EOF=∠COE﹣COF=90°﹣28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.
由角的和差,得∠AOC=∠AOF﹣∠COF=62°﹣28°=34°.
由对顶角相等,得
∠BOD=∠AOC=34°.
【考点】角平分线的定义,对顶角、邻补角
【解析】【分析】根据角的和差,可得∠EOF的度数,根据角平分线的性质,可得∠AOC的度数,根据补角的性质,可得答案.17、【答案】解:∠1=∠2,
理由:∵∠A=∠C=90°,根据四边形的内角和得,∠ADC+∠ABC=180°,
∵BE平分∠ABC,DF平分∠ADC,
∴∠EBC=∠ABC,∠2=∠ADC,
∴∠EBC+∠2=∠ABC+∠ADC=90°,
∵FG⊥BE,
∴∠FGB=90°,
∴∠1+∠EBC=90°,
∴∠1=∠2
【考点】余角和补角,角平分线的性质,多边形内角与外角
【解析】【分析】先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论.四、综合题18、【答案】(1)解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,
∴GF∥BC,
∴∠1=∠3,
∵∠1+∠2=180°,
∴∠3+∠2=180°,
∴BF∥DE;
(2)解:∵BF∥DE,BF⊥AC,∴DE⊥AC,
∵∠1+∠2=180°,∠2=150°,
∴∠1=30°,
∴∠AFG=90°﹣30°=60°.
【考点】余角和补角,垂线
【解析】【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数19、【答案】(1)解:原式=9a6n-4a4n=9(a2n)3-4(a2n)2
当a2n=2时,原式=9×23-16=56
(2)解:∵∠AOE=90°,
∴∠AOC+∠EOC=90°,
∵∠AOC:∠COE=5:4,
∴∠AOC=90°×=50°,
∴∠AOD=180°−50°=130°
【考点】幂的乘方与积的乘方,角的计算,余角和补角,对顶角、邻补角
【解析】【分析】(1)先利用积的乘方计算,再利用积的逆运算化成含有a2n的形式,再把a2n=2代入计算即可;
(2)由于∠AOC与∠EOC互余,∠AOC:∠COE=5:4,所以∠AOC的度数可求,再根据邻补角的定义求解即可.20、【答案】(1)解:如图所示
(2)解:如图所示
【考点】角平分线的定义,垂线,全等三角形的判定与性质,作图—基本作图
【解析】【分析】根据题意画出图形,再利用SSS定理证明△ACO≌△BCO,根据全等三角形的性质可得∠AOC=∠BOC,进而得到射线OC就是∠MON的平分线.(2)由(1)可知OM、ON分别是∠POQ、∠QOG的平分线,则∠MON=90°。4.3.2角的比较与运算一、单选题1、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有(
)A、0个
B、1个
C、2个
D、3个2、如图,已知直线AB、CD相交于点O,OB平分∠EOD,若∠EOD=110°,则∠AOC的度数是(
)A、35°
B、55°
C、70°
D、110°3、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOE的度数等于(
)A、145°
B、135°
C、35°
D、120°4、如图,已知直线AB与CD相交于点O,OC平分∠BOE,若∠AOE=80°,则∠AOD的度数为(
)A、80°
B、70°
C、60°
D、50°5、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为(
)A、35°
B、45°
C、55°
D、65°6、如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是(
)A、90°<α<180°
B、0°<α<90°
C、α=90°
D、α随折痕GF位置的变化而变化7、下列说法中正确的是(
)A、两点之间线段最短
B、若两个角的顶点重合,那么这两个角是对顶角
C、一条射线把一个角分成两个角,那么这条射线是角的平分线
D、过直线外一点有两条直线平行于已知直线8、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于(
)A、30°
B、36°
C、45°
D、72°9、两条平行线被第三条直线所截,则下列说法错误的是(
)A、一对邻补角的平分线互相垂直
B、一对同位角的平分线互相平行
C、一对内错角的平分线互相平行
D、一对同旁内角的平分线互相平行10、如图,已知AB∥CD,直线EF分别交AB,CD于点E、F,EG平分∠AEF,若∠2=40°,则∠1的度数是(
)A、70°
B、65°
C、60°
D、50°11、如图,已知l1∥l2,AC、BC、AD为三条角平分线,则图中与∠1互为余角的角有(
)A、1个
B、2个
C、3个
D、4个二、填空题(共5题;共10分)12、如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠DON为________度.13、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD=________.14、如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM=________.15、如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE=________度.16、如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),
所以AB∥CD(________)
所以∠BGF+∠3=180°(________)
因为∠2+∠EFD=180°(邻补角的性质).
所以∠EFD=________.(等式性质).
因为FG平分∠EFD(已知).
所以∠3=________∠EFD(角平分线的性质).
所以∠3=________.(等式性质).
所以∠BGF=________.(等式性质).
三、解答题(共5题;共25分)17、已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.18、如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.19、如图,AB∥CD,点G、E、F分别在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度数.20、已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.21、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.四、综合题(共3题;共30分)22、如图,O是直线AB上的一点,OC⊥OD,垂足为O.
(1)若∠BOD=32°,求∠AOC的度数;(2)若∠AOC:∠BOD=2:1,直接写出∠BOD的度数.23、如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD.(1)写出图中与∠EOB互余的角;(2)若∠AOF=30°,求∠BOE和∠DOF的度数.24、如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.
(1)若∠A=70°,求∠ABE的度数;(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.
答案解析部分一、单选题1、【答案】B
【考点】直线、射线、线段,角的概念,角平分线的定义
【解析】【解答】解:①平角就是一条直线,错误;②直线比射线线长,错误;
③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个,正确;
④连接两点的线段叫两点之间的距离,错误;
⑤两条射线组成的图形叫做角,错误;
⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,错误;
其中正确的有1个.
故选:B.
【分析】分别利用直线、射线、线段的定义以及角的概念和角平分线的定义分析得出即可.2、【答案】B
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵∠EOD=110°,OB平分∠EOD,∴∠BOD=∠EOD=55°,
∴∠AOC=∠BOD=55°,
故选:B.
【分析】根据角平分线定义可得∠BOD=∠EOD,由对顶角性质可得∠AOC=∠BOD.3、【答案】A
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠EOA=35°,
∴∠BOE=180°﹣35°=145°,
故选:A.
【分析】根据角平分线的性质可得∠EOA的度数,然后根据补角定义可得答案.4、【答案】D
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵∠AOE=80°,∴∠BOE=180°﹣∠AOE=180°﹣80°=100°,
∵OC平分∠BOE,
∴∠BOC=∠BOE=×100°=50°,
∴∠AOD=∠BOC=50°.
故选D.
【分析】根据邻补角的定义求出∠BOE,再根据角平分线的定义求出∠BOC,然后根据对顶角相等解答.5、【答案】A
【考点】角平分线的定义,对顶角、邻补角,垂线
【解析】【解答】解:∵ON⊥OM,∴∠NOM=90°,
∵∠CON=55°,
∴∠COM=90°﹣55°=35°,
∵射线OM平分∠AOC,
∴∠AOM=∠COM=35°,
故选A.
【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.6、【答案】C
【考点】角的计算
【解析】【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH
∴∠GFH=∠EFG+∠EFH=∠EFC+∠EFB=(∠EFC+∠EFB)=×180°=90°.
故选C.
【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE即可求解.7、【答案】A
【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论
【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;
C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;
D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.
故选A.
【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.8、【答案】A
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×=60°,
∵OA平分∠EOC,
∴∠AOC=∠EOC=×60°=30°,
∴∠BOD=∠AOC=30°.
故选:A.
【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.9、【答案】D
【考点】角平分线的定义,平行线的性质
【解析】【解答】解:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;
C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;
D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;
故选:D.
【分析】由两条平行线被第三条直线所截,内错角的平分线互相平行、同旁内角的平分线互相垂直、内错角的平分线互相平行、同位角的平分线互相平行,即可求得答案.10、【答案】A
【考点】角平分线的定义,平行线的性质
【解析】【解答】解:∵直线AB∥CD,∠2=40°,∴∠AEG=∠1,∠AEF=140°,
∵EG平分∠AEF交CD于点G,
∴∠AEG=∠GEF=70°,
∴∠1=70°.
故选:A.
【分析】利用平行线的性质得出∠AEG=∠1,∠AEF=140°,再利用角平分线的性质得出∠AEG=∠GEF=70°,即可得出答案.11、【答案】D
【考点】角平分线的定义,平行线的性质
【解析】【解答】解:∵l1∥l2,且AC、BC、AD为三条角平分线,∴∠1+∠2=×180°=90°,
∴∠1与∠2互余,
又∵∠2=∠3,
∴∠1与∠3互余,
∵∠CAD=∠1+∠4=×180°=90°,
∴∠1与∠4互余,
又∵∠4=∠5,
∴∠1与∠5互余,
故与∠1互余的角共有4个.
故选:D.
【分析】根据平行线的性质,以及角平分线的定义,可得∠1与∠2互余,∠1与∠3互余,∠1与∠4互余,∠1与∠5互余.二、填空题12、【答案】35
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵∠BOC=110°,∴∠BOD=70°,
∵ON为∠BOD平分线,
∴∠DON=35°.
故答案为:35.
【分析】利用邻补角定义及角平分线定义求出所求角的度数即可.13、【答案】40°
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵OA平分∠EOC,∠EOC=80°,∴∠AOC=∠EOC=×80°=40°,
∴∠BOD=∠AOC=40°.
故答案为:40°.
【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答.14、【答案】142°
【考点】角平分线的定义,对顶角、邻补角
【解析】【解答】解:∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,
∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.
故答案是:142°.
【分析】根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.15、【答案】56
【考点】角平分线的定义,平行线的性质,三角形的外角性质
【解析】【解答】解:∵FE∥ON,∠FEO=28°,∴∠NOE=∠FEO=28°,
∵OE平分∠MON,
∴∠NOE=∠EOF=28°,
∵∠MFE是△EOF的外角,
∴∠MFE=∠NOE+∠EOF=28°+28°=56°.
故答案为:56.
【分析】先根据平行线的性质得出∠NOE=∠FEO,再根据角平分线的性质得出∠NOE=∠EOF,由三角形外角的性质即可得出结论.16、【答案】同位角相等,两直线平行;两直线平行,同旁内角互补;100°;;50°;130°
【考点】角平分线的定义,对顶角、邻补角,平行线的判定
【解析】【解答】解:因为∠1=∠2=80°(已知),所以AB∥CD(同位角相等,两直线平行),
所以∠BGF+∠3=180°(两直线平行,同旁内角互补).
因为∠2+∠EFD=180°(邻补角的性质).
所以∠EFD=100°.(等式性质).
因为FG平分∠EFD(已知).
所以∠3=∠EFD(角平分线的性质).
所以∠3=50°.(等式性质).
所以∠BGF=130°.(等式性质).
故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;100°;;50°;130°.
【分析】根据平行显得判定及性质求角的过程,一步步把求解的过程补充完整即可.三、解答题17、【答案】解:∵OA⊥OC,∴∠AOC=90°,
∵∠AOB:∠AOC=2:3,
∴∠AOB=60°.
因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.
①当在∠AOC内时,∠BOC=90°﹣60°=30°;
②当在∠AOC外时,∠BOC=90°+60°=150°.
综上所述,∠BOC的度数为30°或150°.
【考点】角的计算,垂线
【解析】【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.18、【答案】解:∵∠AOE=70°,∴∠BOF=∠AOE=70°,
又∵OG平分∠BOF,
∴∠GOF=∠BOF=35°,
又∵CD⊥EF,
∴∠EOD=90°,
∴∠DOG=180°﹣∠GOF﹣∠EOD=180°﹣35°﹣90°=55°
【考点】角的计算
【解析】【分析】求出∠BOF,根据角平分线求出∠GOF,求出∠EOD,代入∠DOG=180°﹣∠GOF﹣∠EOD求出即可.19、【答案】解:∵AB∥CD,∴∠EFD=∠1=40°.
∴∠EFC=180°﹣∠EFD=180°﹣40°=140°.
∵FG平分∠EFC,
∴∠CFG=∠EFC=70°.
∴∠FGE=∠CFG=70°.
【考点】角平分线的定义,对顶角、邻补角,平行线的性质
【解析】【分析】运用角平分线的定义、平行线的性质和邻补角的定义进行解答即可.20、【答案】解:∵AB∥CD,∴∠CFG=∠AGE=50°,
∴∠GFD=130°;
又FH平分∠EFD,
∴∠HFD=∠EFD=65°;
∴∠BHF=180°﹣∠HFD=115°
【考点】角平分线的定义,对顶角、邻补角,平行线的性质
【解析】【分析】由AB∥CD得到∠AGE=∠CFG,又FH平分∠EFD,∠AGE=50°,由此可以先后求出∠GFD,∠HFD,∠BHF.21、【答案】解:由角的和差,得∠EOF=∠COE﹣COF=90°﹣28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.
由角的和差,得∠AOC=∠AOF﹣∠COF=62°﹣28°=34°.
由对顶角相等,得
∠BOD=∠AOC=34°.
【考点】角平分线的定义,对顶角、邻补角
【解析】【分析】根据角的和差,可得∠EOF的度数,根据角平分线的性质,可得∠AOC的度数,根据补角的性质,可得答案.四、综合题22、【答案】(1)解:∵OC⊥OD
∴∠COD=90°
∵∠AOB是平角
∴∠AOB=180°
∵∠BOD=32°
∴∠AOC=180°-∠BOD-∠COD=58°
(2)解:设∠BOD=x,则∠AOC=2x,
∴x+2x+90°=180°,
∴x=30°,
即∠BOD=30°.
【考点】角的计算,垂线
【解析】【分析】(1)根据OC⊥OD可得∠COD=90°,再由∠AOB为平角,∠BOD=32°即可求得∠AOC的度数;
(2)设∠BOD=x,则∠AOC=2x,根据平角的定义列方程x+2x+90°=180°,求解即可.23、【答案】(1)解:∵OA平分∠COF,∴∠COA=∠FOA=∠BOD,
∵OE⊥CD,
∴∠EOB+∠BOD=90°,
∴∠COA+∠EOB=90°,∠FOA+∠EOB=90°,
∴与∠EOB互余的角是:∠COA,∠FOA,∠BOD
(2)解:∵∠AOF=30°,由(1)知∠COA=∠FOA=∠BOD=30°,∴∠DOF=180°﹣∠FOA﹣∠BOD=120°,
∵OE⊥CD,
∴∠BOE=90°﹣30°=60°
【考点】角平分线的定义,余角和补角,对顶角、邻
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《中国古代礼仪》课件
- 班主任工作计划高一上学期
- 2024年驾驶员年终工作计划
- 【大学课件】旅游规划内容体系
- 益暖中华千里鹅毛暖山区-爱心捐助计划
- 五年级班级工作计划
- 高中化学教师备课计划
- 初三中考英语复习计划024年
- 乡镇第二季度经济计划
- 公司财务工作总结及计划
- 创课:大学生创新创业基础智慧树知到期末考试答案2024年
- 传统保健体育智慧树知到期末考试答案2024年
- 医疗器械的功能扩展和创新应用
- 校园文印室外包服务投标方案(技术标)
- 装饰装修工程监理细则详解样本
- 2022上海中医药大学妇产科护理学题库参考
- 高危急性胸痛及早期症状识别课件
- 2024年机加工行业分析报告及未来发展趋势
- 2023年晋能控股集团限公司校园招聘历年高频难易度、易错点模拟试题(共500题)附带答案详解
- 2024年建筑市场营销行业培训资料
- 2024灌肠术ppt课件完整版
评论
0/150
提交评论