广东省雷州市第八中学2024-2025学年高一上学期入学考试数学试题(解析版)_第1页
广东省雷州市第八中学2024-2025学年高一上学期入学考试数学试题(解析版)_第2页
广东省雷州市第八中学2024-2025学年高一上学期入学考试数学试题(解析版)_第3页
广东省雷州市第八中学2024-2025学年高一上学期入学考试数学试题(解析版)_第4页
广东省雷州市第八中学2024-2025学年高一上学期入学考试数学试题(解析版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年秋雷州八中高一年级入学考试数学试卷试卷总分150分考试时长120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本题共8个小题,每小题5分,共40分.在每小题的4个选项中,只有1个选择是正确的.请把正确的选项填涂在答题卡相应的位置上)1.下列各组数中,互为相反数的是()A.3和 B.3和C.和 D.和【答案】B【解析】【分析】根据相反数的定义判断即可.【详解】对于A项,和互为倒数;对于B项,和互为相反数;对于C项,因为,所以和相等;对于D项,因为,所以和相等.故选:B.2.某正方体的平面展开图如图所示,则原正方体中与“数”字所在的面相对的面上的字是()A.一 B.定 C.满 D.意【答案】D【解析】【分析】根据正方体的表面展开图找相对面的方法:“数”字两端是对面,即可解答.【详解】如图所示:原正方体中与“数”字所在的面相对的面上的字是“意”.故选:D.3.下列运算正确的是()A. B.C. D.【答案】D【解析】【分析】借助乘法公式与幂的运算逐项计算即可得.详解】对A:,故A错误;对B:,故B错误;对C:,故C错误;对D:,故D正确.故选:D.4.体育是初三学生中考的第一科,某班50名同学的体育中考成绩数据如表,其中有两个数据被遮盖,下列关于成绩的统计量中,与被遮盖的数据无关的是()分数4344454647484950人数1213430A.中位数,众数 B.中位数,方差C.平均数,方差 D.平均数,众数【答案】A【解析】【分析】根据众数、中位数平均数和方差的定义求解可得.【详解】解:这组数据中成绩为46、47的人数和为,则这组数据中出现次数最多的数50,即众数50,第25、26个数据都是50,则中位数为50,即中位数,众数不变,平均数,方差均与具体数据有关,故平均数,方差与被遮盖数据有关.故选:A.5.若用列举法表示集合,则下列表示正确的是()A. B. C. D.【答案】B【解析】【分析】解方程组得,即可得到集合.【详解】由解得所以.故选:B【点睛】此题考查集合概念理解,关键在于准确识别描述法表示的集合,根据题意求解方程组,准确表示成所求形式.6.设集合,则()A. B. C. D.【答案】B【解析】【分析】解一元二次不等式后由交集运算得解.【详解】因为,所以故选:B7.按一定规律得到的单项式;,按照上述规律,第n个单项式为()A. B. C. D.【答案】B【解析】【分析】根据题意从系数和指数两个角度分析求解.【详解】观察各个单项式可得,系数是连续的奇数:1,3,5,7,9,…,故第n个单项式的系数是;字母部分是的乘方,a的指数是1,2,3,4,5,…,故第n个单项式的字母部分是,所以第n个单项式是.故选:B.8.在同一直角坐标系中,函数与的图象可能是()A. B.C. D.【答案】A【解析】【分析】根据一次函数和反比例函数的图象特征进行判断即可.【详解】函数与轴交于正半轴,排除D;若,则函数的图象在第一、三象限,函数的图象呈上升趋势,排除B;若,则函数的图象在第二、四象限,函数的图象呈下降趋势,排除C.故选:A二、选择题(本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分)9.下列命题中,是存在量词命题且为假命题的有()A., B.有的矩形不是平行四边形C., D.,【答案】AB【解析】【分析】利用存在量词的概念以及命题的真假即可求解.【详解】ABC均为存在量词命题,D不是存在量词命题,故D错误,选项A:因为,所以命题为假命题;选项B:因为矩形都是平行四边形,所以命题为假命题;选项C:,故命题为真命题,故C错误,故选:AB.10.若,则下列不等式成立是()A. B.C. D.【答案】BD【解析】【分析】对A、B、C:利用作差法分析判断;对D:根据不等式性质分析判断.【详解】对于选项A:因为,又因为,则,可得,所以,故A错误;对于选项B:因为,又因为,则,可得,所以,故B正确;对于选项C:因为,又因为,则,可得,所以,故C错误;对于选项D:因为,所以,故D正确;故选:BD.11.且,则的可能取值为()A.8 B.9 C.10 D.11【答案】BCD【解析】【分析】将展开,利用基本不等式求的最小值,再比较选项可得正确答案.【详解】,当且仅当即时等号成立,取得最小值,所以的不可能为,可能取值为,故选:BCD.三、填空题(本题共3小题,每小题5分,共15分)12.在深圳中考体育科目中,分为必考项目和选考项目,其中男生的必考项目为在200米和1000米项目中二选一:女生的必考项目为在200米、800米项目中二选一,小明(男生)、小花(女生)(两人选择每个项目的可能性一样)所选的必考项目不同的概率是________【答案】##【解析】【分析】先列表求出所有等可能结果数和两个人选择每个项目一样的结果数,然后运用概率公式求解即可.【详解】记事件“小明选择200米项目”为,事件“小明选择1000米项目”为,事件“小花选择200米项目”为,事件“小花选择800米项目”为,故所有基本事件有,,,,共有4种情况,小明、小花所选的必考项目不同的基本事件有,,,共有3种情况,所以小明、小花所选的必考项目不同的概率为.故答案为:.13.设是方程的两个实数根,则的值为______.【答案】【解析】【分析】根据韦达定理代入求解计算即可.【详解】因为是方程的两个实数根,所以,所以.故答案为:14.已知关于x的方程有实数根,则a的取值范围是________【答案】【解析】【分析】分和两种情况,结合判别式求出的取值范围.【详解】因为关于x的方程有实数根,当时,一元一次方程的根为,符合题意;当时,则,解得且;综上所述:.故答案为:.四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤)15.(1)计算:;(2)解方程:.【答案】(1)2(2)或【解析】【分析】(1)由根式、特殊角的三角函数值,负整数指数次幂计算即可;(2)由一元二次方程中因式分解求出根即可;【详解】(1)原式;(2)展开移项可得,即,解得或,16.春节是我国传统佳节,深圳是一个很年轻包容的城市,市民来自全国各地.春节期间,小深调查了本年级学生的去向.其中A表示留在深圳市,B表示北方省市,C表示其他南方省市,D表示广东省内深圳市外.并将调查情况绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的学生有_____________人;(2)将两幅不完整的图补充完整;(3)求扇形统图中C所对圆心角的度数________;(4)若有来自A、B、C、D的四位同学,从中抽取两位同学在开学典礼中分享春节见闻,请用树状图或列表法求恰好抽到的同学都来自广东省的概率.【答案】(1)600(2)作图见解析(3)(4)【解析】【分析】(1)由图可知D类型有240人,占比,据此求解即可;(2)求出C类的人数,进而知道C类的占比及A类的占比,由此补充完整图形;(3)用C类的占比乘以360°即可;(4)列出树状图,写出满足条件的所有等可能结果,根据概率公式求解即可.【小问1详解】本次参加抽样调查的学生有(人).【小问2详解】类的人数为(人).扇形统计图中的百分比为的百分比为.补全条形统计图和扇形统计图如图所示.【小问3详解】扇形统计图中所对圆心角的度数为.【小问4详解】画树状图如下:共有12种等可能的结果,其中恰好抽到的同学都来自广东省的结果有,共2种,恰好抽到的同学都来自广东省的概率为.17.已知,集合,.(1)当时,求,;(2)若,求的取值范围.【答案】(1),(2)【解析】【分析】(1)根据集合的交并运算求解;(2)求出,根据列出应满足的条件.【小问1详解】当时,,,;【小问2详解】,,,∴.18.某学校为给贫困山区对口帮扶的学生送一批学习用品,需在某超市购买10个书包及10个以上的文具盒.已知一个书包和六个文具盒总价120元,两个书包和一个文具盒总价108元.(1)求书包与文具盒的售价分别是多少?(2)为迎接开学,该超市制定了两种优惠方案:方案一:买一个书包送一个文具盒;方案二:按总价的九折付款.购买时,顾客只能选用其中的一种方案.设购买文具盒的个数为x(个),付款金额为y(元).分别写出两种优惠方案中y与x之间的关系式;(3)根据以上信息,说明学校选择哪种优惠方案更实惠?【答案】(1)书包为元、文具盒为元(2)选择方案一时:;选择方案二时:(3)答案见解析【解析】【分析】(1)设出二元一次方程组计算即可得;(2)分别计算出两种方案中y与x之间的关系式即可得;(3)结合(2)中所得关系式,比较大小即可得.【小问1详解】设书包与文具盒的售价分别是元、元,则由题意可得,解得,故书包与文具盒的售价分别是元、元;【小问2详解】由题意可得,若选择方案一:则,若选择方案二:则,【小问3详解】令,解得,令,解得,令,解得,故购买的文具盒超过个时,选择方案二,购买的文具盒等于个时,选择方案一或方案二都可以,购买的文具盒超过10个,少于个时,选择方案一.19.(1)探究问题1:若二次函数(m为常数)的图象与x轴有两个公共点,求m的取值范围.(2)变式:若二次函数(m为常数)的图象与一次函数的图象有两个公共点,则m的取值范围是________.等价转化:若二次函数____(m为常数)的图象与一次函数的图象有两个公共点,则m的取值范围是_________(3)探究问题2:若二次函数的图象在的部分与一次函数的图象有两个公共点,求m的取值范围.【答案】(1);(2);;;(3).【解析】【分析】(1)利用判别式可得;(2)根据有两个不相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论