




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1等腰三角形第一课时三角形的全等和等腰三角形的性质学习目标1.回顾全等三角形的判定和性质;2.理解并掌握等腰三角形的性质及其推论,能运用其解决基本的几何问题.(重点)在八上的“平行线的证明”这一章中,我们学了哪8条基本事实?1.两点确定一条直线;2.两点之间线段最短;3.同一平面内,过一点有且只有一条直线与已知直线垂直;4.同位角相等,两直线平行;5.过直线外一点有且只有一条直线与这条直线平行;6.两边及其夹角分别相等的两个三角形全等(SAS);7.两角及其夹边分别相等的两个三角形全等(ASA);8.三边分别相等的两个三角形全等(SSS).定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题:你能运用基本事实及已经学过的定理证明上面的推论吗?弄清楚证明一个命题的一般步骤是解题的关键证明一个命题的一般步骤:(1)弄清题设和结论;
(2)根据题意画出相应的图形;(3)根据题设和结论写出已知和求证;(4)分析证明思路,写出证明过程.全等三角形的判定和性质一已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E).∵∠A=∠D,∠B=∠E(已知),∴∠C=∠F(等量代换).∵BC=EF(已知),∴△ABC≌△DEF(ASA).FEDCBA两角分别相等且其中一组等角的对边相等的两个三角形全等总结归纳全等三角形的判定方法:SSS,SAS,ASA,AAS.全等三角形的性质:全等三角形的对应边相等,对应角相等.问题1:你还记得我们探索过的等腰三角形的性质吗?推论:等腰三角形顶角的平分线,底边上的中线底边上的高互相重合(三线合一).问题2:你能利用已有的公理和定理证明这些结论吗?定理:等腰三角形的两个底角相等.等腰三角形的性质及其推论二等腰三角形的两个底角相等.ABC已知:△ABC中,AB=AC,求证:∠B=C.思考:如何构造两个全等的三角形?定理:等腰三角形的两个底角相等(等边对等角).如何证明两个角相等呢?可以运用全等三角形的性质“对应角相等”来证回忆:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形.由此,你得到了什么解题的启发?已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:作底边的中线AD,则BD=CD.AB=AC(已知),BD=CD(已作),AD=AD(公共边),
∴△BAD≌△CAD(SSS).∴∠B=∠C(全等三角形的对应角相等).在△BAD和△CAD中方法一:作底边上的中线还有其他的证法吗?已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:作顶角的平分线AD,则∠BAD=∠CAD.AB=AC(已知),∠BAD=∠CAD(已作),AD=AD(公共边),∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).方法二:作顶角的平分线在△BAD和△CAD中想一想:由△BAD≌
△CAD,除了可以得到∠B=∠C之外,你还可以得到那些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?
解:∵△BAD≌
△CAD,由全等三角形的性质易得BD=CD,∠ADB=∠ADC,∠BAD=∠CAD.又∵
∠ADB+∠ADC=180°,∴
∠ADB=∠ADC=
90°,即AD是等腰△ABC底边BC上的中线、顶角∠BAC的角平分线、底边BC上的高线.
ABCD定理:等腰三角形的两个底角相等(等边对等角).ACB如图,在△ABC中,∵AB=AC(已知),∴∠B=∠C(等边对等角).证明后的结论,以后可以直接运用.
总结归纳推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合(三线合一).ACBD12∵AB=AC,∠1=∠2(已知),∴BD=CD,AD⊥BC(等腰三角形三线合一).∵AB=AC,BD=CD(已知),∴∠1=∠2,AD⊥BC(等腰三角形三线合一).∵AB=AC,AD⊥BC(已知),∴BD=CD,∠1=∠2(等腰三角形三线合一).综上可得:如图,在△ABC中,ABCD
例1
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.典例精析分析:(1)找出图中所有相等的角;(2)指出图中有几个等腰三角形?∠A=∠ABD,∠C=∠BDC=∠ABC;△ABC,△ABD,△BCD.ABCDx⌒2x⌒2x⌒⌒2x(3)观察∠BDC与∠A、∠ABD的关系,∠ABC、∠C呢?∠BDC=∠A+∠ABD=2∠A=2∠ABD,∠ABC=∠BDC=2∠A,∠C=∠BDC=2∠A.(4)设∠A=x°,请把△ABC的内角和用含x的式子表示出来.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加强仓库货物入库管理的方案计划
- 营山麻辣社区工作总结
- 打造专业网络的人际交往策略计划
- 生态湿地建设计划
- 农业园区建设与管理指南
- 电力输送与电网调度作业指导书
- 2025年鹰潭考货运资格证模拟试题
- 电影制作项目流程预案
- 运动服装品牌创业开店策划
- 电信运营商行业客户维系与服务升级策略
- 2025年江苏省苏锡常镇高考数学调研试卷(一)(含答案)
- (二模)乌鲁木齐地区2025年高三年级第二次质量检测语文试卷(含官方答案)
- DB37T 4834-2025高速公路集中养护工作指南
- 2025年土木工程业务能力试题及答案
- 城区建筑垃圾处理资源再利用设备采购 投标方案(技术方案)
- 2025年开封大学单招职业倾向性测试题库含答案
- 全国川教版信息技术八年级下册第二单元第2节《制作文创作品》教学设计设计
- DG-TG08-12-2024 普通中小学建设标准
- 建筑工程材料采购管理职责
- 实时数字孪生数据同步技术-深度研究
- Unit 4 History and traditions Project 说课稿 -2024-2025学年高中英语人教版(2019)必修第二册
评论
0/150
提交评论