![2022-2022学年高中数学第四章圆与方程4.3.2空间两点间的距离公式课件新人教A版必修2_第1页](http://file4.renrendoc.com/view7/M02/0A/04/wKhkGWbhLFyAIMmXAAE8tD3ZMYs001.jpg)
![2022-2022学年高中数学第四章圆与方程4.3.2空间两点间的距离公式课件新人教A版必修2_第2页](http://file4.renrendoc.com/view7/M02/0A/04/wKhkGWbhLFyAIMmXAAE8tD3ZMYs0012.jpg)
![2022-2022学年高中数学第四章圆与方程4.3.2空间两点间的距离公式课件新人教A版必修2_第3页](http://file4.renrendoc.com/view7/M02/0A/04/wKhkGWbhLFyAIMmXAAE8tD3ZMYs0013.jpg)
![2022-2022学年高中数学第四章圆与方程4.3.2空间两点间的距离公式课件新人教A版必修2_第4页](http://file4.renrendoc.com/view7/M02/0A/04/wKhkGWbhLFyAIMmXAAE8tD3ZMYs0014.jpg)
![2022-2022学年高中数学第四章圆与方程4.3.2空间两点间的距离公式课件新人教A版必修2_第5页](http://file4.renrendoc.com/view7/M02/0A/04/wKhkGWbhLFyAIMmXAAE8tD3ZMYs0015.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.3.2空间两点间的距离公式
第一页,编辑于星期六:点四十五分。第二页,编辑于星期六:点四十五分。空间中两点间的距离公式(1)一般情况:已知点P1(x1,y1,z1)与点P2(x2,y2,z2),则|P1P2|=____________________________.第三页,编辑于星期六:点四十五分。(2)特殊情况:点P(x,y,z)到原点的距离公式是:|OP|=__________.第四页,编辑于星期六:点四十五分。【思考】在空间两点间的距离公式中,两个点坐标的前后顺序能不能改变?提示:能.空间中两点间的距离公式也可以写成|P1P2|=.第五页,编辑于星期六:点四十五分。【素养小测】1.思维辨析(对的打“√”,错的打“×”)用空间两点间的距离公式不能求平面内两点的距离.(
)提示:×.平面内两点间的距离是空间两点间距离的特例,可以用空间两点间的距离公式求平面内两点的距离.第六页,编辑于星期六:点四十五分。2.空间直角坐标系中,设A(1,3,0),B(-3,6,12),则|AB|= (
)A.
B.13
C.5
D.25【解析】选B.|AB|==13.第七页,编辑于星期六:点四十五分。3.已知空间两点A(1,2,z),B(2,-1,1)之间的距离为,则z= (
)A.2 B.0或2 C.0 D.2或1【解析】选B.由于空间两点A(1,2,z),B(2,-1,1)之间的距离为,即则(z-1)2=1,解得z=0或2.第八页,编辑于星期六:点四十五分。4.已知点P(1,2,3),Q(-3,5,2),它们在面xOy内的投影分别是P′,Q′,则|P′Q′|=________.
【解析】因为点P(1,2,3),Q(-3,5,2),它们在面xOy内的投影分别是P′,Q′,所以P′(1,2,0),Q′(-3,5,0),|P′Q′|==5.答案:5第九页,编辑于星期六:点四十五分。类型一求空间两点间的距离【典例】1.设A(1,1,-2),B(3,2,8),C(0,1,0),则线段AB的中点P到点C的距离为 (
)
第十页,编辑于星期六:点四十五分。2.在空间直角坐标系中,点M(2,-1,3),若点A与点M关于xOy平面对称,点B与点M关于x轴对称,则|AB|= (
)A.2 B.4 C.2 D.3第十一页,编辑于星期六:点四十五分。【思维·引】1.先求出中点坐标,再利用距离公式求距离.2.先求出相应的对称点,再利用距离公式求距离.第十二页,编辑于星期六:点四十五分。【解析】1.选D.因为A(1,1,-2),B(3,2,8),C(0,1,0),所以线段AB的中点P,所以点P到点C的距离为|PC|=第十三页,编辑于星期六:点四十五分。2.选A.因为点M(2,-1,3)关于平面xOy的对称点为A,它的横坐标与纵坐标不变,竖坐标相反,所以A(2,-1,-3);点M(2,-1,3)关于x轴的对称点为B,它的横坐标不变,纵坐标相反,竖坐标相反,所以B(2,1,-3),所以|AB|==2.第十四页,编辑于星期六:点四十五分。【内化·悟】应用空间中两点间的距离公式时需要注意什么问题?提示:注意前后的坐标作差要准确.第十五页,编辑于星期六:点四十五分。【类题·通】关于空间两点间的距离公式求空间两点间的距离问题就是把点的坐标代入距离公式进行计算,若点的坐标中含有未知数,则代入距离公式后列出方程求根.第十六页,编辑于星期六:点四十五分。【习练·破】1.空间中两点A(1,-1,2),B(-1,1,2+2)之间的距离是 (
)A.3 B.4 C.5 D.6第十七页,编辑于星期六:点四十五分。【解析】选B.因为A(1,-1,2),B(-1,1,2+2),所以A,B两点之间的距离d==4.第十八页,编辑于星期六:点四十五分。2.一束光线自点P(1,1,1)出发,被xOy平面反射到达点Q(3,3,6)被吸收,那么光所走的距离是 (
)
【解析】选D.由题意,P(1,1,1)关于平面xOy的对称点为M(1,1,-1),则|QM|=第十九页,编辑于星期六:点四十五分。【加练·固】在空间直角坐标系中,A(4,1,9),B(10,-1,6),C(2,4,3),则△ABC为 (
)A.等边三角形 B.等腰直角三角形C.钝角三角形 D.锐角三角形第二十页,编辑于星期六:点四十五分。【解析】选B.因为在空间直角坐标系中,A(4,1,9),B(10,-1,6),C(2,4,3),所以|AB|=|AC|=|BC|=第二十一页,编辑于星期六:点四十五分。所以|AB|2+|AC|2=|BC|2,且|AB|=|AC|,所以△ABC为等腰直角三角形.第二十二页,编辑于星期六:点四十五分。类型二空间几何体中的距离【典例】如图所示,在长方体ABCD-A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C的中点,求线段MN的长度.
第二十三页,编辑于星期六:点四十五分。【思维·引】先建立空间直角坐标系,确定点M,N的坐标,利用距离公式求距离.第二十四页,编辑于星期六:点四十五分。【解析】如图所示,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系.第二十五页,编辑于星期六:点四十五分。由题意可知C(3,3,0),D(0,3,0),因为|DD1|=|CC1|=|AA1|=2,所以C1(3,3,2),D1(0,3,2),因为N为CD1的中点,所以N.因为M是A1C1的三等分点且靠近A1点,所以M(1,1,2).由两点间距离公式,得|MN|=第二十六页,编辑于星期六:点四十五分。【内化·悟】如果建立的坐标系不一样,点的坐标一样吗?求出的距离一样吗?提示:坐标不一样,距离一样.第二十七页,编辑于星期六:点四十五分。【类题·通】关于图形中的距离问题若所给题目中未建立坐标系,需结合已知条件建立适当的坐标系,再利用空间两点间的距离公式计算.一般按如下的步骤:第二十八页,编辑于星期六:点四十五分。第二十九页,编辑于星期六:点四十五分。【习练·破】已知正方形ABCD的边长为2,PA⊥平面ABCD,且PA=2,E是PD中点.以A为原点,建立如图所示的空间直角坐标系Axyz,则|CE|=________.
第三十页,编辑于星期六:点四十五分。【解析】因为正方形ABCD的边长为2,PA⊥平面ABCD,且|PA|=2,E是PD中点.所以C(2,2,0),E(0,1,1),所以|CE|=答案:
第三十一页,编辑于星期六:点四十五分。【加练·固】如图,在空间直角坐标系中,有一棱长为a的正方体ABCD-A1B1C1D1,A1C的中点E到AB的中点F的距离为(
)
第三十二页,编辑于星期六:点四十五分。【解析】选B.由题意得F,A1(a,0,a),C(0,a,0),所以E,所以|EF|=第三十三页,编辑于星期六:点四十五分。类型三空间中两点间距离公式的应用角度1求点的坐标【典例】(2019·随州高一检测)空间直角坐标系Oxyz中,在z轴上与点A(-4,1,7)和点B(3,5,-2)等距离的点C的坐标为________. 第三十四页,编辑于星期六:点四十五分。【思维·引】根据z轴上点的坐标特点,设出C点的坐标,利用距离公式求值.【解析】设所求点C(0,0,z),因为点C与点A(-4,1,7)和点B(3,5,-2)等距离,所以解得z=.答案:
第三十五页,编辑于星期六:点四十五分。【素养·探】在利用距离公式求点的坐标时,常常用到核心素养中的数学运算,解决与距离相关的问题.本例的条件不变,试求y轴上的点D,使|AD|=|BD|.第三十六页,编辑于星期六:点四十五分。【解析】设点D(0,y,0),因为|AD|=|BD|,所以解得y=-,所以D.第三十七页,编辑于星期六:点四十五分。角度2与距离有关的最值【典例】已知A(1,a,-5),B(2a,-7,-2)(a∈R),则|AB|的最小值为________. 【思维·引】利用距离公式表示出|AB|,通过配方求最值.第三十八页,编辑于星期六:点四十五分。【解析】因为A(1,a,-5),B(2a,-7,-2)(a∈R),所以|AB|=所以当a=-1时,|AB|取最小值答案:3第三十九页,编辑于星期六:点四十五分。【类题·通】1.求未知点的坐标设出点的坐标,利用距离公式列出方程,解方程求出点的坐标即可.第四十页,编辑于星期六:点四十五分。2.关于空间中距离的最值问题利用空间两点间的距离公式,将空间距离问题转化为二次函数的最值问题,体现了数学上的转化思想和函数思想,此类题目的解题方法是直接设出点的坐标,利用距离公式就可以将几何问题代数化,分析函数即可.第四十一页,编辑于星期六:点四十五分。【延伸·练】已知A(3,0,1),B(1,1,2),则到A,B两点的距离相等的点P(x,y,z)的坐标满足的条件为 (
)A.2x+y-z=0
B.x+y-2z=0C.x+y-z+3=0 D.2x-y-z-2=0第四十二页,编辑于星期六:点四十五分。【解析】选D.因为点P(x,y,z)到A(3,0,1),B(1,1,2)两点的距离相等,所以(x-3)2+(y-0)2+(z-1)2=(x-1)2+(y-1)2+(z-2)2,整理得2x-y-z-2=0.第四十三页,编辑于星期六:点四十五分。【习练·破】已知空间中点A(x,1,2)和点B(2,3,4)且|AB|=2,则实数x的值是 (
)A.6或-2 B.-6或2C.3或-4 D.-3或4第四十四页,编辑于星期六:点四十五分。【解析】选A.由题意化简得(x-2)2=16,解得x=6或x=-2.第四十五页,编辑于星期六:点四十五分。【加练·固】在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3).(1)在y轴上是否存在点M,满足|MA|=|MB|?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M的坐标.第四十六页,编辑于星期六:点四十五分。【解析】(1)假设在y轴上存在点M,满足|MA|=|MB|,设M(0,y,0),由|MA|=|MB|,可得显然,此式对任意y∈R恒成立.这就是说,y轴上所有的点都满足|MA|=|MB|.第四十七页,编辑于星期
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运动与健康促进工作计划
- 管理者的影响力与说服力计划
- 2025年双氰胺合作协议书
- 评优评先活动与实施方案计划
- 包装行业设计创新包装材料计划
- 2025年微循环测试系统项目建议书
- 2025年激光转速测量仪合作协议书
- 2025年中国消毒柜行业发展环境、供需态势及投资前景分析报告(智研咨询发布)
- 七年级下册《平行线》课件与练习
- 电子政务系统权限设置指南
- 2024-2025学年山东省烟台市高三上学期期末学业水平考试英语试题(解析版)
- 2025年益阳医学高等专科学校高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 配套课件-前厅客房服务与管理
- 2025年度药店营业员服务规范及合同约束协议3篇
- 工业和信息化部装备工业发展中心2025年上半年应届毕业生招聘易考易错模拟试题(共500题)试卷后附参考答案
- 重庆市2024-2025学年高一上学期期末联考生物试卷(含答案)
- 紧急疏散逃生方法
- 羊水栓塞护理应急预案
- 2024年医师定期考核临床类考试题库及答案(共500题)
- 2025安全生产工作目标及实施计划
- 工程进度款支付台账-1-
评论
0/150
提交评论