版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市庐阳区第六中学2024年高三期中数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数fxA. B.C. D.2.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值3.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.24.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A., B. C., D.,5.已知函数,则下列结论中正确的是①函数的最小正周期为;②函数的图象是轴对称图形;③函数的极大值为;④函数的最小值为.A.①③ B.②④C.②③ D.②③④6.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是()A. B.C. D.7.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.8.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.9.定义在上的偶函数,对,,且,有成立,已知,,,则,,的大小关系为()A. B. C. D.10.是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则()A. B. C. D.11.已知集合,,若,则()A.或 B.或 C.或 D.或12.已知复数满足:(为虚数单位),则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知关于的方程在区间上恰有两个解,则实数的取值范围是________14.设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则+的最小值为_____.15.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.16.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.18.(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.19.(12分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求△ABC的面积.20.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.21.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.(1)证明:;(2)求直线与平面所成角的正弦值.22.(10分)已知,,,.(1)求的值;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由f12=e-14>0排除选项D;【详解】由f12=e-14>0,可排除选项D,f-1=-e【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→02、B【解析】
根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.3、B【解析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.4、A【解析】
依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.5、D【解析】
因为,所以①不正确;因为,所以,,所以,所以函数的图象是轴对称图形,②正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可.当时,,且,令,得,可知函数在处取得极大值为,③正确;因为,所以,所以函数的最小值为,④正确.故选D.6、C【解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【点睛】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.7、B【解析】
利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B【点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.8、D【解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.9、A【解析】
根据偶函数的性质和单调性即可判断.【详解】解:对,,且,有在上递增因为定义在上的偶函数所以在上递减又因为,,所以故选:A【点睛】考查偶函数的性质以及单调性的应用,基础题.10、B【解析】
设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值.【详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,,取的三等分点、如图,则,,,,所以、、、、,由题意设,,和都是等边三角形,为的中点,,,,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,,可得,此时,则,.故选:B.【点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题.11、B【解析】
因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.12、A【解析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.【详解】因为关于的方程在区间上恰有两个解,令,所以方程在上只有一解,即有,直线与在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综上实数的取值范围是.【点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.14、【解析】不等式表示的平面区域阴影部分,当直线ax+by=z(a>0,b>0)过直线x−y+2=0与直线2x−y−6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而当且仅当时取等号,则的最小值为.15、【解析】
求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为,,,的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.16、或【解析】
用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,,所以.联立解得或故双曲线的离心率为或.故答案为:或.【点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】
(1)连接AC、BD交于点O,交EF于点H,连接GH,再证明即可.(2)证明与即可.【详解】(1)连接AC、BD交于点O,交EF于点H,连接GH,所以O为AC的中点,H为OC的中点,由E、F为DC、BC的中点,再由题意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直线平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因为侧面底面ABCD,由面面垂直的性质定理可知平面ABCD,所以,因为底面ABCD是菱形,所以,因为,所以平面SDB.【点睛】本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.18、(1)答案不唯一,具体见解析(2)证明见解析【解析】
(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【详解】(1)依题意,当时,,①当时,恒成立,此时在定义域上单调递增;②当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不妨设,则,要证,只需证,易知,故只需证,即证令,(),则==,(也可代入后再求导)在上单调递减,,故对于时,总有.由此得【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.19、(1);(2).【解析】
(1)整理得:,再由余弦定理可得,问题得解.(2)由正弦定理得:,,,再代入即可得解.【详解】(1)由题意,得,∴;(2)由正弦定理,得,,∴.【点睛】本题主要考查了正、余弦定理及三角形面积公式,考查了转化思想及化简能力,属于基础题.20、(1)极小值点为,极小值为,无极大值;(2)证明见解析【解析】
先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴【点睛】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题.21、(1)见证明;(2)【解析】
(1)取的中点,连.可证得,,于是可得平面,进而可得结论成立.(2)运用几何法或向量法求解可得所求角的正弦值.【详解】(1)证明:取的中点,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省武汉市(2024年-2025年小学五年级语文)统编版小升初真题(下学期)试卷及答案
- 高中化学 第四章 非金属及其化合物教案及练习 新人教版必修
- 购买课件分享教学课件
- 高二物理全套教案(上学期)人教大纲版,从第16单元到第31单元成套
- DB11T 1080-2014 硬泡聚氨酯复合板现抹轻质砂浆外墙外保温工程施工技术规程
- 河南省驻马店市上蔡县2023-2024学年五年级上学期期中英语试卷
- 山西省吕梁市交城县2024-2025学年七年级上学期期中考试生物学试题(含答案)
- 便鞋市场发展预测和趋势分析
- 婴儿服装市场需求与消费特点分析
- 护肤药剂产业规划专项研究报告
- 第七章课程概述
- 培育发展新质生产力宣讲稿
- 宪法学 形考作业2答卷
- 2024《公共基础知识必刷300题》题库带答案(轻巧夺冠)
- 创新设计前沿-知到答案、智慧树答案
- 防止传销进校园主题班会省公开课一等奖全国示范课微课金奖课件
- 人力资源外包投标方案
- MOOC 模拟电子电路-杭州电子科技大学 中国大学慕课答案
- 基于人工智能的文化遗产保护与传承策略
- 2024-2029年中国酒店行业发展分析及发展前景与趋势预测研究报告
- MOOC 高等数学(上)-西北工业大学 中国大学慕课答案
评论
0/150
提交评论