蒙古准格尔旗重点名校2021-2022学年中考联考数学试题含解析_第1页
蒙古准格尔旗重点名校2021-2022学年中考联考数学试题含解析_第2页
蒙古准格尔旗重点名校2021-2022学年中考联考数学试题含解析_第3页
蒙古准格尔旗重点名校2021-2022学年中考联考数学试题含解析_第4页
蒙古准格尔旗重点名校2021-2022学年中考联考数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蒙古准格尔旗重点名校2021-2022学年中考联考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列性质中菱形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.既是轴对称图形又是中心对称图形2.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2B.3C.4D.53.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.54.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是()A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥35.运用乘法公式计算(3﹣a)(a+3)的结果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+96.计算:的结果是()A. B.. C. D.7.方程的解为()A.x=4 B.x=﹣3 C.x=6 D.此方程无解8.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是()A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度9.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元10.如果k<0,b>0,那么一次函数y=kx+b的图象经过()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限二、填空题(共7小题,每小题3分,满分21分)11.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.12.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.13.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为.14.﹣的绝对值是_____.15.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.16.已知xy=3,那么的值为______.17.分解因式:a3-a=三、解答题(共7小题,满分69分)18.(10分)计算:()-1+()0+-2cos30°.19.(5分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?20.(8分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.

如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).

(1)当x为何值时,OP∥AC;

(2)求y与x之间的函数关系式,并确定自变量x的取值范围;

(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)21.(10分)计算:+()-2-8sin60°22.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.23.(12分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.24.(14分)先化简,再求值:(m+2﹣)•,其中m=﹣.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质2、A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.3、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.4、C【解析】

解:把点(0,2)(a,0)代入y=kx+b,得b=2.则a=-3∵-3≤a<0,∴-3≤-3解得:k≥2.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.5、C【解析】

根据平方差公式计算可得.【详解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故选C.【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.6、B【解析】

根据分式的运算法则即可求出答案.【详解】解:原式===故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.7、C【解析】

先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.8、C【解析】

Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化9、C【解析】

用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.10、D【解析】

根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,

∴一次函数y=kx+b的图象经过第二、四象限.

又∵b>0时,

∴一次函数y=kx+b的图象与y轴交与正半轴.

综上所述,该一次函数图象经过第一、二、四象限.

故选D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(共7小题,每小题3分,满分21分)11、10%【解析】

设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.【详解】设平均每次上调的百分率是x,依题意得,解得:,(不合题意,舍去).答:平均每次上调的百分率为10%.故答案是:10%.【点睛】此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12、.【解析】

设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a.求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF=()2,计算即可;【详解】设正六边形ABCDEF的边长为4a,则AA1=AF1=FF1=2a,作A1M⊥FA交FA的延长线于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,FM=5a,在Rt△A1FM中,FA1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F1L=a,根据对称性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六边形GHIJKI:S六边形ABCDEF=()2=,故答案为:.【点睛】本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题.13、1【解析】

设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【详解】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=1.故答案为1.考点:反比例函数图象上点的坐标特征.14、【解析】

绝对值是指一个数在数轴上所对应点到原点的距离,用“|

|”来表示.|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】﹣的绝对值是|﹣|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.15、1或1【解析】

由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.16、±2【解析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy=3,所以x、y同号,于是原式==,当x>0,y>0时,原式==2;当x<0,y<0时,原式==−2故原式=±2.点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.17、【解析】a3-a=a(a2-1)=三、解答题(共7小题,满分69分)18、4+2.【解析】

原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】原式=3+1+3-2×=4+2.19、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】

(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.20、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.【解析】

(1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.【详解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵当P为FG的中点时,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴当x为1.5s时,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),FH=(x+5)过点O作OD⊥FP,垂足为D∵点O为EF中点∴OD=EG=2cm∵FP=3﹣x∴S四边形OAHP=S△AFH﹣S△OFP=•AH•FH﹣•OD•FP=•(x+5)•(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1则S四边形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.21、4-2【解析】试题分析:原式第一项利用二次根式的化简公式进行化简,第二项利用负指数公式化简,第三项利用特殊角的三角函数值化简,合并即可得到结果试题解析:原式=2+4-8×=2+4-4=4-222、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB

D′=∠ABD,B

D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB

D′=∠ABD,B

D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论