版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省兴化市戴泽初中重点名校2022年毕业升学考试模拟卷数学卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1052.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根3.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.194.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a55.如果与互补,与互余,则与的关系是()A. B.C. D.以上都不对6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.7.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤209.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块 B.4块 C.6块 D.9块10.如图,数轴上表示的是下列哪个不等式组的解集()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.一组数据:1,2,a,4,5的平均数为3,则a=_____.12.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“"<”)13.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=;⑤当点D从点A运动到点B时,线段EF扫过的面积是.其中正确结论的序号是.14.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.15.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数等级餐厅五星四星三星二星一星合计甲53821096129271000乙460187154169301000丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.16.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用三、解答题(共8题,共72分)17.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴的正半轴上,OA=6,点B在直线y=34x上,直线l:y=kx+92与折线AB-BC有公共点.点B的坐标是;若直线l经过点B,求直线l的解析式;对于一次函数y=kx+9218.(8分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并将上述数据整理在如下的频数分布表中,请你补充其中的数据:志愿服务时间ABCDEF频数34107(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为人;(4)问题解决:校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.19.(8分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.20.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.21.(8分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?22.(10分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP//AO时,求∠PAC的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.23.(12分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.24.在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:1230000这个数用科学记数法可以表示为故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.2、D【解析】
解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.3、A【解析】
一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.4、B【解析】
根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.5、C【解析】
根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C.【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.6、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.7、D【解析】
A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.8、A【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.故选A.9、B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B.10、B【解析】
根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【详解】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
A、不等式组的解集为x>-3,故A错误;B、不等式组的解集为x≥-3,故B正确;C、不等式组的解集为x<-3,故C错误;D、不等式组的解集为-3<x<5,故D错误.故选B.【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.12、=.【解析】
黄金分割点,二次根式化简.【详解】设AB=1,由P是线段AB的黄金分割点,且PA>PB,根据黄金分割点的,AP=,BP=.∴.∴S1=S1.13、①③⑤.【解析】试题分析:①连接CD,如图1所示,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴结论“CE=CF”正确;②当CD⊥AB时,如图2所示,∵AB是半圆的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为.∴结论“线段EF的最小值为”错误;③当AD=2时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切,∴结论“EF与半圆相切”正确;④当点F恰好落在上时,连接FB、AF,如图4所示,∵点E与点D关于AC对称,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圆的直径,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴结论“AD=”错误;⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,∴EF扫过的图形就是图5中阴影部分,∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×=,∴EF扫过的面积为,∴结论“EF扫过的面积为”正确.故答案为①③⑤.考点:1.圆的综合题;2.等边三角形的判定与性质;3.切线的判定;4.相似三角形的判定与性质.14、2【解析】
将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出.【详解】2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=1.2、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1.∴a﹣b=1-1=2.故答案为:2.【点睛】中位数与众数的定义.15、丙【解析】
不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.16、1【解析】
根据向量的三角形法则表示出CB,再根据BC、AD的关系解答.【详解】如图,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案为12a-【点睛】本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.三、解答题(共8题,共72分)17、(1)(8,6);(2)y=316【解析】
(1)OA=6,即BC=6,代入y=3(2)将点B的坐标代入直线l中求出k即可得出解析式(3)一次函数y=kx+92(k≠0),必经过0,【详解】解:∵OA=6,矩形OABC中,BC=OA∴BC=6∵点B在直线y=3∴6=3故点B的坐标为(8,6)故答案为(8,6)(2)把点B8,6的坐标代入y=kx+92解得:k=∴y=(3))∵一次函数y=kx+92(k≠0)∴y值为0⩽y⩽∴代入y=kx+9解得-9【点睛】本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.18、(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4).【解析】
(1)观察统计图即可得解;(2)根据题意作图;(3)①根据两个统计图解答即可;②根据图1先算出不足10小时的概率再乘以200人即可;(4)根据题意画出树状图即可解答.【详解】解:(1)C的频数为7,E的频数为9;故答案为7,9;(2)补全频数直方图为:(3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;②200×=35,所以估计九年级200名团员中参加此次义务劳动的人数约为35人;故答案为35;(4)画树状图为:共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,所以两人恰好选在同一个服务点的概率==.【点睛】本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.19、(1)x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.【解析】
(1)不等式的解即为函数y=﹣2x+b的图象在函数y=上方的x的取值范围.可由图象直接得到.(2)用b表示出OC和OF的长度,求出CF的长,进而求出sin∠OCB.(3)求直线AB的解析式关键是求出b的值.【详解】解:(1)如图:由图象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;(2)设直线AB和y轴的交点为F.当y=0时,x=,即OC=﹣;当x=0时,y=b,即OF=﹣b,∴CF==,∴sin∠OCB=sin∠OCF===.(3)过A作AD⊥x轴,过B作BE⊥x轴,则AC=AD=,BC=,∴AC﹣BC=(yA+yB)=(xA+xB)=﹣5,又﹣2x+b=,所以﹣2x2+bx﹣k=0,∴,∴×b=﹣5,∴b=,∴y=﹣2x﹣2.【点睛】这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性.20、(1);(2).【解析】
(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.21、450m.【解析】
若要使A、C、E三点共线,则三角形BDE是以∠E为直角的三角形,利用三角函数即可解得DE的长.【详解】解:,,,在中,,,,.答:另一边开挖点离,正好使,,三点在一直线上.【点睛】本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30°的直角三角形的性质.22、(1)抛物线的表达式为;(2);(3)P点的坐标是.【解析】
分析:(1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;(2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,结合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.详解:(1)∵直线y=x+1经过点A、C,点A在x轴上,点C在y轴上∴A点坐标是(﹣1,0),点C坐标是(0,1),又∵抛物线过A,C两点,∴解得,∴抛物线的表达式为;(2)作PH⊥AC于H,∵点C、P在抛物线上,CP//AO,C(0,1),A(-1,0)∴P(-2,1),AC=,∴PC=2,,∴PH=,∵A(﹣1,0),C(0,1),∴∠CAO=15°.∵CP//AO,∴∠ACP=∠CAO=15°,∵PH⊥AC,∴CH=PH=,∴.∴;(3)∵,∴抛物线的对称轴为直线,∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,∴PQ∥AO,且PQ=AO=1.∵P,Q都在抛物线上,∴P,Q关于直线对称,∴P点的横坐标是﹣3,∵当x=﹣3时,,∴P点的坐标是.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt△APH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ∥AO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.【详解】请在此输入详解!23、(1)见解析(2)25【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快餐店翻新工程装修合同
- 电子竞技佣金居间合同模板
- 海鲜速递个人运输合同样本
- 桌球室装修工程合同
- 亲子教育中心门面翻新合同
- 个性化投资及市场贸易咨询合同2024年范本一
- 佛山市职工2024版劳动协议样式版
- 化工园区土方清运合作协议
- 2024年某弃土场土方倾倒合作协议版
- 仓储物流合作协议模板
- 新质生产力:复合概念、发展基础与系统创新路径
- 2024年个人车位租赁合同参考范文(三篇)
- 江西省九江市修水县2024届九年级上学期期中考试数学试卷(含答案)
- 2024年山东省济南市中考数学真题(含答案)
- 山东省青岛市黄岛区2023-2024学年六年级上学期期中语文试卷
- 二手门市销售合同范本
- 2024年安全员A证试题库(附答案)
- 浙江省温州市苍南县2023-2024学年八年级上学期期中考试英语试题
- 部编版五年级上册《交流平台·初试身手·习作例文》课件
- 新苏教版六年级上册科学全册知识点
- 2.2生命活动的主要承担者-蛋白质(公开课)
评论
0/150
提交评论